Translator Disclaimer
Summer 2022 On the nonrigidity of trace modules
Haydee Lindo
J. Commut. Algebra 14(2): 277-283 (Summer 2022). DOI: 10.1216/jca.2022.14.277

Abstract

We establish a link between trace modules and rigidity in modules over Noetherian rings. We identify classes of modules which must have self-extensions and use the theory of trace ideals to verify the Auslander–Reiten conjecture for syzygies of ideals over Artinian Gorenstein rings.

Citation

Download Citation

Haydee Lindo. "On the nonrigidity of trace modules." J. Commut. Algebra 14 (2) 277 - 283, Summer 2022. https://doi.org/10.1216/jca.2022.14.277

Information

Received: 5 April 2018; Revised: 15 September 2019; Accepted: 28 September 2019; Published: Summer 2022
First available in Project Euclid: 14 July 2022

Digital Object Identifier: 10.1216/jca.2022.14.277

Subjects:
Primary: 13C13 , 13D07 , 16E30

Keywords: Auslander–Reiten conjecture , Gorenstein ring , rigid module , trace ideal , trace module , vanishing of Ext

Rights: Copyright © 2022 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
7 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.14 • No. 2 • Summer 2022
Back to Top