Translator Disclaimer
2018 A note on residual coordinates of polynomial rings
M'hammed El Kahoui, Mustapha Ouali
J. Commut. Algebra 10(3): 317-326 (2018). DOI: 10.1216/JCA-2018-10-3-317

Abstract

A special case of the Dolgachev-Weisfeiler conjecture asserts that residual coordinates of the polynomial algebra $A =\mathbb{C} [x]^{[n]}$, $n\geq 3$, are coordinates. It is well known that such polynomials are stable coordinates; however, all the examples constructed thus far are actually 1-stable coordinates. In this paper, we show that all residual coordinates of $A $ are 1-stable coordinates.

Citation

Download Citation

M'hammed El Kahoui. Mustapha Ouali. "A note on residual coordinates of polynomial rings." J. Commut. Algebra 10 (3) 317 - 326, 2018. https://doi.org/10.1216/JCA-2018-10-3-317

Information

Published: 2018
First available in Project Euclid: 9 November 2018

zbMATH: 06976317
MathSciNet: MR3874654
Digital Object Identifier: 10.1216/JCA-2018-10-3-317

Subjects:
Primary: 13B25 , 14R10

Keywords: Residual coordinate , stable coordinate

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
10 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.10 • No. 3 • 2018
Back to Top