Open Access
Translator Disclaimer
2014 Sparse Signal Recovery for Direction-of-Arrival Estimation Based on Source Signal Subspace
Bo Lin, Jiying Liu, Meihua Xie, Jubo Zhu
J. Appl. Math. 2014: 1-8 (2014). DOI: 10.1155/2014/530413


After establishing the sparse representation of the source signal subspace, we propose a new method to estimate the direction of arrival (DOA) by solving an 1-norm minimization for sparse signal recovery of the source powers. Second-order cone programming is applied to reformulate this optimization problem, and it is solved effectively by employing the interior point method. Due to the keeping of the signal subspace and the discarding of the noise subspace, the proposed method is more robust to noise than many other sparsity-based methods. The real data tests and the numerical simulations demonstrate that the proposed method has improved accuracy and robustness to noise, and it is not sensitive to the knowledge about the number of sources. We discuss the computational cost of our method theoretically, and the experiment results verify the computational effectiveness.


Download Citation

Bo Lin. Jiying Liu. Meihua Xie. Jubo Zhu. "Sparse Signal Recovery for Direction-of-Arrival Estimation Based on Source Signal Subspace." J. Appl. Math. 2014 1 - 8, 2014.


Published: 2014
First available in Project Euclid: 2 March 2015

zbMATH: 07131670
Digital Object Identifier: 10.1155/2014/530413

Rights: Copyright © 2014 Hindawi


Vol.2014 • 2014
Back to Top