Open Access
2014 A Constitutive Model for the Annulus of Human Intervertebral Disc: Implications for Developing a Degeneration Model and Its Influence on Lumbar Spine Functioning
J. Cegoñino, V. Moramarco, A. Calvo-Echenique, C. Pappalettere, A. Pérez del Palomar
J. Appl. Math. 2014(SI05): 1-15 (2014). DOI: 10.1155/2014/658719
Abstract

The study of the mechanical properties of the annulus fibrosus of the intervertebral discs is significant to the study on the diseases of lumbar intervertebral discs in terms of both theoretical modelling and clinical application value. The annulus fibrosus tissue of the human intervertebral disc (IVD) has a very distinctive structure and behaviour. It consists of a solid porous matrix, saturated with water, which mainly contains proteoglycan and collagen fibres network. In this work a mathematical model for a fibred reinforced material including the osmotic pressure contribution was developed. This behaviour was implemented in a finite element (FE) model and numerical characterization and validation, based on experimental results, were carried out for the normal annulus tissue. The characterization of the model for a degenerated annulus was performed, and this was capable of reproducing the increase of stiffness and the reduction of its nonlinear material response and of its hydrophilic nature. Finally, this model was used to reproduce the degeneration of the L4L5 disc in a complete finite element lumbar spine model proving that a single level degeneration modifies the motion patterns and the loading of the segments above and below the degenerated disc.

References

1.

M. A. Adams and P. J. Roughley, “What is intervertebral disc degeneration, and what causes it?” Spine, vol. 31, no. 18, pp. 2151–2161, 2006. M. A. Adams and P. J. Roughley, “What is intervertebral disc degeneration, and what causes it?” Spine, vol. 31, no. 18, pp. 2151–2161, 2006.

2.

J. P. Urban, A. Maroudas, M. T. Bayliss, and J. Dillon, “Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues,” Biorheology, vol. 16, no. 6, pp. 447–464, 1979. J. P. Urban, A. Maroudas, M. T. Bayliss, and J. Dillon, “Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues,” Biorheology, vol. 16, no. 6, pp. 447–464, 1979.

3.

J. O. Galante, “Tensile properties of the human lumbar annulus fibrosus,” Acta Orthopaedica Scandinavica, supplement 100, pp. 1–91, 1967. J. O. Galante, “Tensile properties of the human lumbar annulus fibrosus,” Acta Orthopaedica Scandinavica, supplement 100, pp. 1–91, 1967.

4.

J. C. Iatridis, L. A. Setton, R. J. Foster, B. A. Rawlins, M. Weidenbaum, and V. C. Mow, “Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression,” Journal of Biomechanics, vol. 31, no. 6, pp. 535–544, 1998. J. C. Iatridis, L. A. Setton, R. J. Foster, B. A. Rawlins, M. Weidenbaum, and V. C. Mow, “Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression,” Journal of Biomechanics, vol. 31, no. 6, pp. 535–544, 1998.

5.

A. Shirazi-Adl, “On the fibre composite material models of disc annulus$—$comparison of predicted stresses,” Journal of Biomechanics, vol. 22, no. 4, pp. 357–365, 1989. A. Shirazi-Adl, “On the fibre composite material models of disc annulus$—$comparison of predicted stresses,” Journal of Biomechanics, vol. 22, no. 4, pp. 357–365, 1989.

6.

V. C. Mow, W. Zhu, and A. Ratclife, “Structure and function of articular cartilage and meniscus,” in Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, Eds., pp. 43–198, Raven Press, New York, NY, USA, 1991. V. C. Mow, W. Zhu, and A. Ratclife, “Structure and function of articular cartilage and meniscus,” in Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, Eds., pp. 43–198, Raven Press, New York, NY, USA, 1991.

7.

B. R. Simon, J. P. Liable, D. Pflaster, Y. Yuan, and M. H. Krag, “A poroelastic finite element formulation including transport and swelling in soft tissue structures,” Journal of Biomechanical Engineering, vol. 118, no. 1, pp. 1–9, 1996. B. R. Simon, J. P. Liable, D. Pflaster, Y. Yuan, and M. H. Krag, “A poroelastic finite element formulation including transport and swelling in soft tissue structures,” Journal of Biomechanical Engineering, vol. 118, no. 1, pp. 1–9, 1996.

8.

W. M. Lai, J. S. Hou, and V. C. Mow, “A triphasic theory for the swelling and deformation behaviors of articular cartilage,” Journal of Biomechanical Engineering, vol. 113, no. 3, pp. 245–258, 1991. W. M. Lai, J. S. Hou, and V. C. Mow, “A triphasic theory for the swelling and deformation behaviors of articular cartilage,” Journal of Biomechanical Engineering, vol. 113, no. 3, pp. 245–258, 1991.

9.

D. N. Sun, W. Y. Gu, X. E. Guo, W. M. Lai, and V. C. Mow, “A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues,” International Journal for Numerical Methods in Engineering, vol. 45, no. 10, pp. 1375–1402, 1999. D. N. Sun, W. Y. Gu, X. E. Guo, W. M. Lai, and V. C. Mow, “A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues,” International Journal for Numerical Methods in Engineering, vol. 45, no. 10, pp. 1375–1402, 1999.

10.

A. J. H. Frijns, J. M. Huyghe, and J. D. Janssen, “A validation of the quadriphasic mixture theory for intervertebral disc tissue,” International Journal of Engineering Science, vol. 35, no. 15, pp. 1419–1429, 1997. A. J. H. Frijns, J. M. Huyghe, and J. D. Janssen, “A validation of the quadriphasic mixture theory for intervertebral disc tissue,” International Journal of Engineering Science, vol. 35, no. 15, pp. 1419–1429, 1997.

11.

R. van Loon, J. M. Huyghe, M. W. Wijlaars, and F. P. T. Baaijens, “3D FE implementation of an incompressible quadriphasic mixture model,” International Journal for Numerical Methods in Engineering, vol. 57, no. 9, pp. 1243–1258, 2003. R. van Loon, J. M. Huyghe, M. W. Wijlaars, and F. P. T. Baaijens, “3D FE implementation of an incompressible quadriphasic mixture model,” International Journal for Numerical Methods in Engineering, vol. 57, no. 9, pp. 1243–1258, 2003.

12.

L. P. Li and W. Herzog, “Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization,” Journal of Biomechanics, vol. 37, no. 3, pp. 375–382, 2004. L. P. Li and W. Herzog, “Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization,” Journal of Biomechanics, vol. 37, no. 3, pp. 375–382, 2004.

13.

W. Wilson, C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes, “A fibril-reinforced poroviscoelastic swelling model for articular cartilage,” Journal of Biomechanics, vol. 38, no. 6, pp. 1195–1204, 2005. W. Wilson, C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes, “A fibril-reinforced poroviscoelastic swelling model for articular cartilage,” Journal of Biomechanics, vol. 38, no. 6, pp. 1195–1204, 2005.

14.

E. R. Acaroglu, J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum, “Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus,” Spine, vol. 20, no. 24, pp. 2690–2701, 1995. E. R. Acaroglu, J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum, “Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus,” Spine, vol. 20, no. 24, pp. 2690–2701, 1995.

15.

J. Antoniou, T. Steffen, F. Nelson et al., “The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration,” Journal of Clinical Investigation, vol. 98, no. 4, pp. 996–1003, 1996. J. Antoniou, T. Steffen, F. Nelson et al., “The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration,” Journal of Clinical Investigation, vol. 98, no. 4, pp. 996–1003, 1996.

16.

W. Y. Gu, X. G. Mao, R. J. Foster, M. Weidenbaum, V. C. Mow, and B. A. Rawlins, “The anisotropic hydraulic permeability of human lumbar anulus fibrosus: influence of age, degeneration, direction, and water content,” Spine, vol. 24, no. 23, pp. 2449–2455, 1999. W. Y. Gu, X. G. Mao, R. J. Foster, M. Weidenbaum, V. C. Mow, and B. A. Rawlins, “The anisotropic hydraulic permeability of human lumbar anulus fibrosus: influence of age, degeneration, direction, and water content,” Spine, vol. 24, no. 23, pp. 2449–2455, 1999.

17.

R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer, “An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 4, no. 3, pp. 209–229, 2001. R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer, “An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 4, no. 3, pp. 209–229, 2001.

18.

A. Rohlmann, T. Zander, H. Schmidt, H. Wilke, and G. Bergmann, “Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method,” Journal of Biomechanics, vol. 39, no. 13, pp. 2484–2490, 2006. A. Rohlmann, T. Zander, H. Schmidt, H. Wilke, and G. Bergmann, “Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method,” Journal of Biomechanics, vol. 39, no. 13, pp. 2484–2490, 2006.

19.

A. Polikeit, P. Nolte, and S. J. Ferguson, “Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit,” Journal of Biomechanics, vol. 37, no. 7, pp. 1061–1069, 2004. A. Polikeit, P. Nolte, and S. J. Ferguson, “Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit,” Journal of Biomechanics, vol. 37, no. 7, pp. 1061–1069, 2004.

20.

R. N. Natarajan, J. R. Williams, S. A. Lavender, and G. B. J. Andersson, “Poro-elastic finite element model to predict the failure progression in a lumbar disc due to cyclic loading,” Computers and Structures, vol. 85, no. 11$–$14, pp. 1142–1151, 2007. R. N. Natarajan, J. R. Williams, S. A. Lavender, and G. B. J. Andersson, “Poro-elastic finite element model to predict the failure progression in a lumbar disc due to cyclic loading,” Computers and Structures, vol. 85, no. 11$–$14, pp. 1142–1151, 2007.

21.

H. Schmidt, A. Shirazi-Adl, F. Galbusera, and H. J. Wilke, “Res-ponse analysis of the lumbar spine during regular daily activities$—$a finite element analysis,” Journal of Biomechanics, vol. 43, no. 10, pp. 1849–1856, 2010. H. Schmidt, A. Shirazi-Adl, F. Galbusera, and H. J. Wilke, “Res-ponse analysis of the lumbar spine during regular daily activities$—$a finite element analysis,” Journal of Biomechanics, vol. 43, no. 10, pp. 1849–1856, 2010.

22.

M. A. Adams, B. J. C. Freeman, H. P. Morrison, I. W. Nelson, and P. Dolan, “Mechanical initiation of intervertebral disc degeneration,” Spine, vol. 25, no. 13, pp. 1625–1636, 2000. M. A. Adams, B. J. C. Freeman, H. P. Morrison, I. W. Nelson, and P. Dolan, “Mechanical initiation of intervertebral disc degeneration,” Spine, vol. 25, no. 13, pp. 1625–1636, 2000.

23.

I. A. Stokes and J. C. Iatridis, “Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization,” Spine, vol. 29, no. 23, pp. 2724–2732, 2004. I. A. Stokes and J. C. Iatridis, “Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization,” Spine, vol. 29, no. 23, pp. 2724–2732, 2004.

24.

H. A. L. Guerin and D. M. Elliott, “Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load,” Journal of Biomechanics, vol. 39, no. 8, pp. 1410–1418, 2006. H. A. L. Guerin and D. M. Elliott, “Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load,” Journal of Biomechanics, vol. 39, no. 8, pp. 1410–1418, 2006.

25.

W. Johannessen and D. M. Elliott, “Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression,” Spine, vol. 30, no. 24, pp. E724–E729, 2005. W. Johannessen and D. M. Elliott, “Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression,” Spine, vol. 30, no. 24, pp. E724–E729, 2005.

26.

R. N. Natarajan, J. R. Williams, and G. B. J. Andersson, “Recent advances in analytical modeling of lumbar disc degeneration,” Spine, vol. 29, no. 23, pp. 2733–2741, 2004. R. N. Natarajan, J. R. Williams, and G. B. J. Andersson, “Recent advances in analytical modeling of lumbar disc degeneration,” Spine, vol. 29, no. 23, pp. 2733–2741, 2004.

27.

K. Singh, K. Masuda, E. J. M. Thonar, H. S. An, and G. Cs-Szabo, “Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc,” Spine, vol. 34, no. 1, pp. 10–16, 2009. K. Singh, K. Masuda, E. J. M. Thonar, H. S. An, and G. Cs-Szabo, “Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc,” Spine, vol. 34, no. 1, pp. 10–16, 2009.

28.

S. Umehara, S. Tadano, K. Abumi, K. Katagiri, K. Kaneda, and T. Ukai, “Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc,” Spine, vol. 21, no. 7, pp. 811–820, 1996. S. Umehara, S. Tadano, K. Abumi, K. Katagiri, K. Kaneda, and T. Ukai, “Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc,” Spine, vol. 21, no. 7, pp. 811–820, 1996.

29.

H. J. Kirkaldy-Willis and H. F. Farfan, “Instability of the lumbar spine,” Clinical Orthopaedics and Related Research, vol. 165, pp. 110–123, 1982. H. J. Kirkaldy-Willis and H. F. Farfan, “Instability of the lumbar spine,” Clinical Orthopaedics and Related Research, vol. 165, pp. 110–123, 1982.

30.

A. Fujiwara, T. H. Lim, H. S. An, C. H. Jeon, G. B. Andersson, and V. M. Haughton, “The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine,” Spine, vol. 25, no. 23, pp. 3036–3044, 2000. A. Fujiwara, T. H. Lim, H. S. An, C. H. Jeon, G. B. Andersson, and V. M. Haughton, “The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine,” Spine, vol. 25, no. 23, pp. 3036–3044, 2000.

31.

N. Tanaka, H. S. An, T. H. Lim, A. Fujiwara, C. H. Jeon, and V. M. Haughton, “The relationship between disc degeneration and flexibility of the lumbar spine,” Spine Journal, vol. 1, no. 1, pp. 47–56, 2001. N. Tanaka, H. S. An, T. H. Lim, A. Fujiwara, C. H. Jeon, and V. M. Haughton, “The relationship between disc degeneration and flexibility of the lumbar spine,” Spine Journal, vol. 1, no. 1, pp. 47–56, 2001.

32.

M. Krismer, C. Haid, H. Behensky, P. Kapfinger, F. Landauer, and F. Rachbauer, “Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration,” Spine, vol. 25, no. 16, pp. 2020–2027, 2000. M. Krismer, C. Haid, H. Behensky, P. Kapfinger, F. Landauer, and F. Rachbauer, “Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration,” Spine, vol. 25, no. 16, pp. 2020–2027, 2000.

33.

M. Mimura, M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto, and A. Vasavada, “Disc degeneration affects the multidirectional flexibility of the lumbar spine,” Spine, vol. 19, no. 12, pp. 1371–1380, 1994. M. Mimura, M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto, and A. Vasavada, “Disc degeneration affects the multidirectional flexibility of the lumbar spine,” Spine, vol. 19, no. 12, pp. 1371–1380, 1994.

34.

A. Kettler, F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke, “Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database,” European Spine Journal, vol. 20, no. 4, pp. 578–584, 2011. A. Kettler, F. Rohlmann, C. Ring, C. Mack, and H. J. Wilke, “Do early stages of lumbar intervertebral disc degeneration really cause instability? Evaluation of an in vitro database,” European Spine Journal, vol. 20, no. 4, pp. 578–584, 2011.

35.

S. Tang and B. J. Rebholz, “Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study,” Journal of Orthopaedic Science, vol. 16, no. 2, pp. 221–228, 2011. S. Tang and B. J. Rebholz, “Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study,” Journal of Orthopaedic Science, vol. 16, no. 2, pp. 221–228, 2011.

36.

J. Z. Yan, G. X. Qiu, Z. H. Wu, X. S. Wang, and Z. J. Xing, “Finite element analysis in adjacent segment degeneration after lumbar fusion,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 1, pp. 96–100, 2011. J. Z. Yan, G. X. Qiu, Z. H. Wu, X. S. Wang, and Z. J. Xing, “Finite element analysis in adjacent segment degeneration after lumbar fusion,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 1, pp. 96–100, 2011.

37.

L. M. Ruberte, R. N. Natarajan, and G. B. Andersson, “Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments$—$a finite element model study,” Journal of Biomechanics, vol. 42, no. 3, pp. 341–348, 2009. L. M. Ruberte, R. N. Natarajan, and G. B. Andersson, “Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments$—$a finite element model study,” Journal of Biomechanics, vol. 42, no. 3, pp. 341–348, 2009.

38.

S. Ebara, J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum, “Tensile properties of nondegenerate human lumbar anulus fibrosus,” Spine, vol. 21, no. 4, pp. 452–461, 1996. S. Ebara, J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum, “Tensile properties of nondegenerate human lumbar anulus fibrosus,” Spine, vol. 21, no. 4, pp. 452–461, 1996.

39.

Y. Schroeder, D. M. Elliott, W. Wilson, F. P. T. Baaijens, and J. M. Huyghe, “Experimental and model determination of human intervertebral disc osmoviscoelasticity,” Journal of Orthopaedic Research, vol. 26, no. 8, pp. 1141–1146, 2008. Y. Schroeder, D. M. Elliott, W. Wilson, F. P. T. Baaijens, and J. M. Huyghe, “Experimental and model determination of human intervertebral disc osmoviscoelasticity,” Journal of Orthopaedic Research, vol. 26, no. 8, pp. 1141–1146, 2008.

40.

W. Wilson, C. C. van Donkelaar, and J. M. Huyghe, “A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues,” Journal of Biomechanical Engineering, vol. 127, no. 1, pp. 158–165, 2005. W. Wilson, C. C. van Donkelaar, and J. M. Huyghe, “A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues,” Journal of Biomechanical Engineering, vol. 127, no. 1, pp. 158–165, 2005.

41.

P. E. Riches, N. Dhillon, J. Lotz, A. W. Woods, and D. S. McNally, “The internal mechanics of the intervertebral disc under cyclic loading,” Journal of Biomechanics, vol. 35, no. 9, pp. 1263–1271, 2002. P. E. Riches, N. Dhillon, J. Lotz, A. W. Woods, and D. S. McNally, “The internal mechanics of the intervertebral disc under cyclic loading,” Journal of Biomechanics, vol. 35, no. 9, pp. 1263–1271, 2002.

42.

V. K. Goel, T. Monroe, L. G. Gilbertson, and P. Brinckmann, “Interlaminar shear stresses and laminae separation in a disc,” Spine, vol. 20, pp. 243–246, 1995. V. K. Goel, T. Monroe, L. G. Gilbertson, and P. Brinckmann, “Interlaminar shear stresses and laminae separation in a disc,” Spine, vol. 20, pp. 243–246, 1995.

43.

V. Moramarco, V. P. del Palomar, C. Pappalettere, and M. Doblar$é$, “An accurate validation of a computational model of a human lumbosacral segment,” Journal of Biomechanics, vol. 43, no. 2, pp. 334–342, 2010. V. Moramarco, V. P. del Palomar, C. Pappalettere, and M. Doblar$é$, “An accurate validation of a computational model of a human lumbosacral segment,” Journal of Biomechanics, vol. 43, no. 2, pp. 334–342, 2010.

44.

A. P. del Palomar, B. Calvo, and M. Doblar$é$, “An accurate finite element model of the cervical spine under quasi-static loading,” Journal of Biomechanics, vol. 41, no. 3, pp. 523–531, 2008. A. P. del Palomar, B. Calvo, and M. Doblar$é$, “An accurate finite element model of the cervical spine under quasi-static loading,” Journal of Biomechanics, vol. 41, no. 3, pp. 523–531, 2008.

45.

G. A. Holzapfel, C. A. J. Schulze-Bauer, G. Feigl, and P. Regitnig, “Single lamellar mechanics of the human lumbar anulus fibrosus,” Biomechanics and Modeling in Mechanobiology, vol. 3, no. 3, pp. 125–140, 2005. G. A. Holzapfel, C. A. J. Schulze-Bauer, G. Feigl, and P. Regitnig, “Single lamellar mechanics of the human lumbar anulus fibrosus,” Biomechanics and Modeling in Mechanobiology, vol. 3, no. 3, pp. 125–140, 2005.

46.

Y. Guan, N. Yoganandan, J. Moore et al., “Moment-rotation responses of the human lumbosacral spinal column,” Journal of Biomechanics, vol. 40, no. 9, pp. 1975–1980, 2007. Y. Guan, N. Yoganandan, J. Moore et al., “Moment-rotation responses of the human lumbosacral spinal column,” Journal of Biomechanics, vol. 40, no. 9, pp. 1975–1980, 2007.

47.

Y. Schroeder, W. Wilson, J. M. R. J. Huyghe, and F. P. T. Baaijens, “Osmoviscoelastic finite element model of the intervertebral disc,” European Spine Journal, vol. 15, no. 3, pp. 361–371, 2006. Y. Schroeder, W. Wilson, J. M. R. J. Huyghe, and F. P. T. Baaijens, “Osmoviscoelastic finite element model of the intervertebral disc,” European Spine Journal, vol. 15, no. 3, pp. 361–371, 2006.

48.

J. Chazal, A. Tanguy, M. Bourges et al., “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction,” Journal of Biomechanics, vol. 18, no. 3, pp. 167–176, 1985. J. Chazal, A. Tanguy, M. Bourges et al., “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction,” Journal of Biomechanics, vol. 18, no. 3, pp. 167–176, 1985.

49.

K. Goto, N. Tajima, E. Chosa et al., “Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis),” Journal of Orthopaedic Science, vol. 8, no. 4, pp. 577–584, 2003. K. Goto, N. Tajima, E. Chosa et al., “Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis),” Journal of Orthopaedic Science, vol. 8, no. 4, pp. 577–584, 2003.

50.

F. A. Pintar, N. Yoganandan, T. Myers, A. Elhagediab, and A. Sances Jr., “Biomechanical properties of human lumbar spine ligaments,” Journal of Biomechanics, vol. 25, no. 11, pp. 1351–1356, 1992. F. A. Pintar, N. Yoganandan, T. Myers, A. Elhagediab, and A. Sances Jr., “Biomechanical properties of human lumbar spine ligaments,” Journal of Biomechanics, vol. 25, no. 11, pp. 1351–1356, 1992.

51.

N. O. Chahine, F. H. Chen, C. T. Hung, and G. A. Ateshian, “Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature,” Biophysical Journal, vol. 89, no. 3, pp. 1543–1550, 2005. N. O. Chahine, F. H. Chen, C. T. Hung, and G. A. Ateshian, “Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature,” Biophysical Journal, vol. 89, no. 3, pp. 1543–1550, 2005.

52.

G. A. Holzapfel, Nonlinear Solid Mechanics, Wiley, New York, NY, USA, 2000. MR1827472 G. A. Holzapfel, Nonlinear Solid Mechanics, Wiley, New York, NY, USA, 2000. MR1827472

53.

A. Koponen, M. Kataja, and J. Timonen, “Permeability and eff-ective porosity of porous media,” Physical Review E, vol. 56, pp. 3319–3325, 1997. A. Koponen, M. Kataja, and J. Timonen, “Permeability and eff-ective porosity of porous media,” Physical Review E, vol. 56, pp. 3319–3325, 1997.

54.

M. Argoubi and A. Shirazi-Adl, “Poroelastic creep response analysis of a lumbar motion segment in compression,” Journal of Biomechanics, vol. 29, no. 10, pp. 1331–1339, 1996. M. Argoubi and A. Shirazi-Adl, “Poroelastic creep response analysis of a lumbar motion segment in compression,” Journal of Biomechanics, vol. 29, no. 10, pp. 1331–1339, 1996.

55.

J. C. Iatridis, J. P. Laible, and M. H. Krag, “Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model,” Journal of Biomechanical Engineering, vol. 125, no. 1, pp. 12–24, 2003. J. C. Iatridis, J. P. Laible, and M. H. Krag, “Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model,” Journal of Biomechanical Engineering, vol. 125, no. 1, pp. 12–24, 2003.

56.

M. R. DiSilvestro and J.-K. F. Suh, “A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression,” Journal of Biomechanics, vol. 34, no. 4, pp. 519–525, 2001. M. R. DiSilvestro and J.-K. F. Suh, “A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression,” Journal of Biomechanics, vol. 34, no. 4, pp. 519–525, 2001.

57.

R. N. Natarajan and G. B. J. Andersson, “The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading,” Spine, vol. 24, no. 18, pp. 1873–1881, 1999. \endinput R. N. Natarajan and G. B. J. Andersson, “The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading,” Spine, vol. 24, no. 18, pp. 1873–1881, 1999. \endinput
Copyright © 2014 Hindawi
J. Cegoñino, V. Moramarco, A. Calvo-Echenique, C. Pappalettere, and A. Pérez del Palomar "A Constitutive Model for the Annulus of Human Intervertebral Disc: Implications for Developing a Degeneration Model and Its Influence on Lumbar Spine Functioning," Journal of Applied Mathematics 2014(SI05), 1-15, (2014). https://doi.org/10.1155/2014/658719
Published: 2014
Vol.2014 • No. SI05 • 2014
Back to Top