Open Access
Translator Disclaimer
2014 A Test Matrix for an Inverse Eigenvalue Problem
G. M. L. Gladwell, T. H. Jones, N. B. Willms
J. Appl. Math. 2014(SI04): 1-6 (2014). DOI: 10.1155/2014/515082

Abstract

We present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-mass inverse problem incorporating the test matrix is provided.

Citation

Download Citation

G. M. L. Gladwell. T. H. Jones. N. B. Willms. "A Test Matrix for an Inverse Eigenvalue Problem." J. Appl. Math. 2014 (SI04) 1 - 6, 2014. https://doi.org/10.1155/2014/515082

Information

Published: 2014
First available in Project Euclid: 1 October 2014

zbMATH: 07131656
MathSciNet: MR3216129
Digital Object Identifier: 10.1155/2014/515082

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.2014 • No. SI04 • 2014
Back to Top