Open Access
Translator Disclaimer
2013 Generalized Linear Spatial Models to Predict Slate Exploitability
Angeles Saavedra, Javier Taboada, María Araújo, Eduardo Giráldez
J. Appl. Math. 2013(SI28): 1-7 (2013). DOI: 10.1155/2013/531062


The aim of this research was to determine the variables that characterize slate exploitability and to model spatial distribution. A generalized linear spatial model (GLSMs) was fitted in order to explore relationship between exploitability and different explanatory variables that characterize slate quality. Modelling the influence of these variables and analysing the spatial distribution of the model residuals yielded a GLSM that allows slate exploitability to be predicted more effectively than when using generalized linear models (GLM), which do not take spatial dependence into account. Studying the residuals and comparing the prediction capacities of the two models lead us to conclude that the GLSM is more appropriate when the response variable presents spatial distribution.


Download Citation

Angeles Saavedra. Javier Taboada. María Araújo. Eduardo Giráldez. "Generalized Linear Spatial Models to Predict Slate Exploitability." J. Appl. Math. 2013 (SI28) 1 - 7, 2013.


Published: 2013
First available in Project Euclid: 14 March 2014

zbMATH: 1271.91085
Digital Object Identifier: 10.1155/2013/531062

Rights: Copyright © 2013 Hindawi


Vol.2013 • No. SI28 • 2013
Back to Top