Open Access
2013 Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems
L. Bergamaschi, A. Martínez
J. Appl. Math. 2013(SI11): 1-10 (2013). DOI: 10.1155/2013/767042

Abstract

We propose a parallel preconditioner for the Newton method in the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners starting from an enhanced approximate inverse RFSAI (Bergamaschi and Martínez, 2012) and enriched by a BFGS-like update formula is proposed to accelerate the preconditioned conjugate gradient solution of the linearized Newton system to solve A u = q ( u ) u , q ( u ) being the Rayleigh quotient. In a previous work (Bergamaschi and Martínez, 2013) the sequence of preconditioned Jacobians is proven to remain close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to 1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner. The overall RFSAI-BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well-established eigenvalue solver on all the test problems.

Citation

Download Citation

L. Bergamaschi. A. Martínez. "Parallel RFSAI-BFGS Preconditioners for Large Symmetric Eigenproblems." J. Appl. Math. 2013 (SI11) 1 - 10, 2013. https://doi.org/10.1155/2013/767042

Information

Published: 2013
First available in Project Euclid: 14 March 2014

zbMATH: 06950861
MathSciNet: MR3108918
Digital Object Identifier: 10.1155/2013/767042

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI11 • 2013
Back to Top