Open Access
2012 Symbolic Computation and the Extended Hyperbolic Function Method for Constructing Exact Traveling Solutions of Nonlinear PDEs
Huang Yong, Shang Yadong, Yuan Wenjun
J. Appl. Math. 2012: 1-19 (2012). DOI: 10.1155/2012/716719

Abstract

On the basis of the computer symbolic system Maple and the extended hyperbolic function method, we develop a more mathematically rigorous and systematic procedure for constructing exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of various nonlinear partial differential equations that are with physical backgrounds. Compared with the existing methods, the proposed method gives new and more general solutions. More importantly, the method provides a straightforward and effective algorithm to obtain abundant explicit and exact particular solutions for large nonlinear mathematical physics equations. We apply the presented method to two variant Boussinesq equations and give a series of exact explicit traveling wave solutions that have some more general forms. So consequently, the efficiency and the generality of the proposed method are demonstrated.

Citation

Download Citation

Huang Yong. Shang Yadong. Yuan Wenjun. "Symbolic Computation and the Extended Hyperbolic Function Method for Constructing Exact Traveling Solutions of Nonlinear PDEs." J. Appl. Math. 2012 1 - 19, 2012. https://doi.org/10.1155/2012/716719

Information

Published: 2012
First available in Project Euclid: 2 January 2013

zbMATH: 1268.65142
MathSciNet: MR2984204
Digital Object Identifier: 10.1155/2012/716719

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top