Open Access
2012 Positive Solutions to a Generalized Second-Order Difference Equation with Summation Boundary Value Problem
Thanin Sitthiwirattham, Jessada Tariboon
J. Appl. Math. 2012: 1-15 (2012). DOI: 10.1155/2012/569313

Abstract

By using Krasnoselskii's fixed point theorem, we study the existence of positive solutions to the three-point summation boundary value problem Δ 2 u ( t - 1 ) + a ( t ) f ( u ( t ) ) = 0 , t { 1,2 , , T } , u ( 0 ) = β s = 1 η u ( s ) , u ( T + 1 ) = α s = 1 η u ( s ) , where f is continuous, T 3 is a fixed positive integer, η { 1,2 , . . . , T - 1 } , 0 < α < ( 2 T + 2 ) / η ( η + 1 ) , 0 < β < ( 2 T + 2 - α η ( η + 1 ) ) / η ( 2 T - η + 1 ), and Δ u ( t - 1 ) = u ( t ) - u ( t - 1 ) . We show the existence of at least one positive solution if f is either superlinear or sublinear.

Citation

Download Citation

Thanin Sitthiwirattham. Jessada Tariboon. "Positive Solutions to a Generalized Second-Order Difference Equation with Summation Boundary Value Problem." J. Appl. Math. 2012 1 - 15, 2012. https://doi.org/10.1155/2012/569313

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1244.39008
MathSciNet: MR2923340
Digital Object Identifier: 10.1155/2012/569313

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top