Open Access
2012 Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems
Weili Xiong, Wei Fan, Rui Ding
J. Appl. Math. 2012: 1-14 (2012). DOI: 10.1155/2012/684074

Abstract

This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive (IN-CAR) model and the input nonlinear controlled autoregressive autoregressive moving average (IN-CARARMA) model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algorithm to estimate the unknown parameter vectors. It is proved that the parameter estimates consistently converge to their true values under the persistent excitation condition. A simulation example is provided.

Citation

Download Citation

Weili Xiong. Wei Fan. Rui Ding. "Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems." J. Appl. Math. 2012 1 - 14, 2012. https://doi.org/10.1155/2012/684074

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1251.62036
MathSciNet: MR2959986
Digital Object Identifier: 10.1155/2012/684074

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top