Open Access
2012 Asymptotic Properties of Derivatives of the Stieltjes Polynomials
Hee Sun Jung, Ryozi Sakai
J. Appl. Math. 2012: 1-25 (2012). DOI: 10.1155/2012/482935

Abstract

Let w λ ( x ) : = ( 1 x 2 ) λ 1 / 2 and P λ , n ( x ) be the ultraspherical polynomials with respect to w λ ( x ) . Then, we denote the Stieltjes polynomials with respect to w λ ( x ) by E λ , n + 1 ( x ) satisfying 1 1 w λ ( x ) P λ , n ( x ) E λ , n + 1 ( x ) x m d x = 0 , 0 m < n + 1 , 1 1 w λ ( x ) P λ , n ( x ) E λ , n + 1 ( x ) x m d x 0 , m = n + 1 . In this paper, we investigate asymptotic properties of derivatives of the Stieltjes polynomials E λ , n + 1 ( x ) and the product E λ , n + 1 ( x ) P λ , n ( x ) . Especially, we estimate the even-order derivative values of E λ , n + 1 ( x ) and E λ , n + 1 ( x ) P λ , n ( x ) at the zeros of E λ , n + 1 ( x ) and the product E λ , n + 1 ( x ) P λ , n ( x ) , respectively. Moreover, we estimate asymptotic representations for the odd derivatives values of E λ , n + 1 ( x ) and E λ , n + 1 ( x ) P λ , n ( x ) at the zeros of E λ , n + 1 ( x ) and E λ , n + 1 ( x ) P λ , n ( x ) on a closed subset of ( 1 , 1 ) , respectively. These estimates will play important roles in investigating convergence and divergence of the higher-order Hermite-Fejér interpolation polynomials.

Citation

Download Citation

Hee Sun Jung. Ryozi Sakai. "Asymptotic Properties of Derivatives of the Stieltjes Polynomials." J. Appl. Math. 2012 1 - 25, 2012. https://doi.org/10.1155/2012/482935

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1252.41004
MathSciNet: MR2959981
Digital Object Identifier: 10.1155/2012/482935

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top