Abstract
This paper treats a linear equation \begin{equation*} Av=b, \end{equation*} where $A \in \mathbb{F}^{n\times n}$ and $b \in \mathbb{F}^n$. Here, $\mathbb{F}$ is a set of floating point numbers. Let $\mathbf{u}$ be the unit round-off of the working precision and $\kappa(A)=\|A\|_{\infty}\|A^{-1}\|_{\infty}$ be the condition number of the problem. In this paper, ill-conditioned problems with \begin{equation*} 1 < \mathbf{u}\kappa(A) < \infty \end{equation*} are considered and an iterative refinement algorithm for the problems is proposed. In this paper, the forward and backward stability will be shown for this iterative refinement algorithm.
Citation
Shin'ichi Oishi. Takeshi Ogita. Siegfried M. Rump. "Iterative Refinement for Ill-Conditioned Linear Systems." Japan J. Indust. Appl. Math. 26 (2-3) 465 - 476, October 2009.
Information