Open Access
2007 Preferential Attachment Random Graphs with General Weight Function
K. B. Athreya
Internet Math. 4(4): 401-418 (2007).


Start with graph $G_0 \equiv \{V_1,V_2\}$ with one edge connecting the two vertices $V_1$, $V_2$. Now create a new vertex $V_3$ and attach it (i.e., add an edge) to $V_1$ or $V_2$ with equal probability. Set $G_1 \equiv \{V_1,V_2,V_3\}$. Let $G_n \equiv \{V_1,V_2,\ldots,V_{n+2}\}$ be the graph after $n$ steps, $n \geq 0$. For each $i$, $1 \leq i \leq n+2$, let $d_n(i)$ be the number of vertices in $G_n$ to which $V_i$ is connected. Now create a new vertex $V_{n+3}$ and attach it to $V_i$ in $G_n$ with probability proportional to $w(d_n(i))$, $1 \leq i \leq n+2$, where $w(\cdot)$ is a function from $N \equiv \{1,2,3,\ldots\}$ to $(0,\infty)$. In this paper, some results on behavior of the degree sequence $\{d_n(i)\}_{n\geq 1,i\geq 1}$ and the empirical distribution $\{\pi_n(j) \equiv \frac{1}{n} \sum^n_{i=1} I(d_n(i) = j)\}_{n\geq 1}$ are derived. Our results indicate that the much discussed power-law growth of $d_n(i)$ and power law decay of $\pi(j) \equiv \lim_{n \rightarrow \infty} \pi_n(j)$ hold essentially only when the weight function $w(\cdot)$ is asymptotically linear. For example, if $w(x) = cx^2$ then for $i\geq 1$, $\lim_n d_n(i)$ exists and is finite with probability (w.p.)\ 1 and $\pi(j) \equiv \delta_{j1}$, and if $w(x) = cx^p$, $1/2 <p < 1$ then for $i \geq 1$, $d_n(i)$ grows like $(\log n)^q$ where $q=(1-p)^{-1}$. The main tool used in this paper is an embedding in continuous time of pure birth Markov chains.


Download Citation

K. B. Athreya. "Preferential Attachment Random Graphs with General Weight Function." Internet Math. 4 (4) 401 - 418, 2007.


Published: 2007
First available in Project Euclid: 27 May 2009

zbMATH: 1206.68225
MathSciNet: MR2522950

Rights: Copyright © 2007 A K Peters, Ltd.

Vol.4 • No. 4 • 2007
Back to Top