Open Access
2010 Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations
L. K. Kikina, I. P. Stavroulakis
Int. J. Differ. Equ. 2010(SI2): 1-14 (2010). DOI: 10.1155/2010/598068

Abstract

Consider the second-order linear delay differential equation x′′(t)+p(t)x(τ(t))=0, tt0, where pC([t0,),+), τC([t0,),), τ(t) is nondecreasing, τ(t)t for tt0 and limtτ(t)=, the (discrete analogue) second-order difference equation Δ2x(n)+p(n)x(τ(n))=0, where Δx(n)=x(n+1)x(n), Δ2=ΔΔ, p:+, τ:, τ(n)n1, and limnτ(n)=+, and the second-order functional equation x(g(t))=P(t)x(t)+Q(t)x(g2(t)), tt0, where the functions P, QC([t0,),+), gC([t0,),), g(t)t for tt0, limtg(t)=, and g2 denotes the 2th iterate of the function g, that is, g0(t)=t, g2(t)=g(g(t)), tt0. The most interesting oscillation criteria for the second-order linear delay differential equation, the second-order difference equation and the second-order functional equation, especially in the case where liminftτ(t)tτ(s)p(s)ds1/e and limsuptτ(t)tτ(s)p(s)ds<1 for the second-order linear delay differential equation, and 0<liminft{Q(t)P(g(t))}1/4 and limsupt{Q(t)P(g(t))}<1, for the second-order functional equation, are presented.

Citation

Download Citation

L. K. Kikina. I. P. Stavroulakis. "Oscillation Criteria for Second-Order Delay, Difference, and Functional Equations." Int. J. Differ. Equ. 2010 (SI2) 1 - 14, 2010. https://doi.org/10.1155/2010/598068

Information

Received: 2 December 2009; Accepted: 9 January 2010; Published: 2010
First available in Project Euclid: 26 January 2017

zbMATH: 1207.34082
MathSciNet: MR2607727
Digital Object Identifier: 10.1155/2010/598068

Rights: Copyright © 2010 Hindawi

Vol.2010 • No. SI2 • 2010
Back to Top