Open Access
2006 About maximal partial 2-spreads in $\mathrm{PG}(3m-1,q)$
Szabolcs L. Fancsali, Péter Sziklai
Innov. Incidence Geom. 4: 89-102 (2006). DOI: 10.2140/iig.2006.4.89

Abstract

In this article we construct maximal partial 2-spreads in PG ( 8 , q ) of deficiency δ = ( k 1 ) q 2 , where k q 2 + q + 1 and δ = k q 2 + l ( q 2 1 ) + 1 , where k + l q 2 and δ = ( k + 1 ) q 2 + l ( q 2 1 ) + m ( q 2 2 ) + 1 , where k + l + m q 2 . Using these results, we also construct maximal partial 2-spreads in PG ( 3 m 1 , q ) of various deficiencies for m 4 .

Citation

Download Citation

Szabolcs L. Fancsali. Péter Sziklai. "About maximal partial 2-spreads in $\mathrm{PG}(3m-1,q)$." Innov. Incidence Geom. 4 89 - 102, 2006. https://doi.org/10.2140/iig.2006.4.89

Information

Received: 21 December 2005; Accepted: 5 March 2007; Published: 2006
First available in Project Euclid: 28 February 2019

zbMATH: 1130.51004
MathSciNet: MR2334647
Digital Object Identifier: 10.2140/iig.2006.4.89

Subjects:
Primary: 51E23

Keywords: projective space , spread

Rights: Copyright © 2006 Mathematical Sciences Publishers

MSP
Back to Top