Abstract
We study modules for the divided power algebra $\mathbf{D}$ in a single variable over a commutative Noetherian ring $\mathbf{K}$. Our first result states that $\mathbf{D}$ is a coherent ring. In fact, we show that there is a theory of Gröbner bases for finitely generated ideals, and so computations with finitely presented $\mathbf{D}$-modules are in principle algorithmic. We go on to determine much about the structure of finitely presented $\mathbf{D}$-modules, such as: existence of certain nice resolutions, computation of the Grothendieck group, results about injective dimension, and how they interact with torsion modules. Our results apply not just to the classical divided power algebra, but to its $q$-variant as well, and even to a much broader class of algebras we introduce called “generalized divided power algebras.” On the other hand, we show that the divided power algebra in two variables over $\mathbf{Z}_{p}$ is not coherent.
Citation
Rohit Nagpal. Andrew Snowden. "The module theory of divided power algebras." Illinois J. Math. 61 (3-4) 287 - 353, Fall and Winter 2017. https://doi.org/10.1215/ijm/1534924829
Information