Open Access
Spring 2015 Uniqueness results for noncommutative spheres and projective spaces
Teodor Banica, Szabolcs Mészáros
Illinois J. Math. 59(1): 219-233 (Spring 2015). DOI: 10.1215/ijm/1455203165

Abstract

It is known that, under strong combinatorial axioms, $O_{N}\subset O_{N}^{*}\subset O_{N}^{+}$ are the only orthogonal quantum groups. We prove here similar results for the noncommutative spheres $S^{N-1}_{\mathbb{R}}\subset S^{N-1}_{\mathbb{R},*}\subset S^{N-1}_{\mathbb{R},+}$, the noncommutative projective spaces $P^{N-1}_{\mathbb{R}}\subset P^{N-1}_{\mathbb{C}}\subset P^{N-1}_{+}$, and the projective orthogonal quantum groups $PO_{N}\subset PO_{N}^{*}\subset PO_{N}^{+}$.

Citation

Download Citation

Teodor Banica. Szabolcs Mészáros. "Uniqueness results for noncommutative spheres and projective spaces." Illinois J. Math. 59 (1) 219 - 233, Spring 2015. https://doi.org/10.1215/ijm/1455203165

Information

Received: 7 July 2015; Revised: 17 November 2015; Published: Spring 2015
First available in Project Euclid: 11 February 2016

zbMATH: 1350.46044
MathSciNet: MR3459634
Digital Object Identifier: 10.1215/ijm/1455203165

Subjects:
Primary: 46L54 , 46L65

Rights: Copyright © 2015 University of Illinois at Urbana-Champaign

Vol.59 • No. 1 • Spring 2015
Back to Top