Abstract
It is known that, under strong combinatorial axioms, $O_{N}\subset O_{N}^{*}\subset O_{N}^{+}$ are the only orthogonal quantum groups. We prove here similar results for the noncommutative spheres $S^{N-1}_{\mathbb{R}}\subset S^{N-1}_{\mathbb{R},*}\subset S^{N-1}_{\mathbb{R},+}$, the noncommutative projective spaces $P^{N-1}_{\mathbb{R}}\subset P^{N-1}_{\mathbb{C}}\subset P^{N-1}_{+}$, and the projective orthogonal quantum groups $PO_{N}\subset PO_{N}^{*}\subset PO_{N}^{+}$.
Citation
Teodor Banica. Szabolcs Mészáros. "Uniqueness results for noncommutative spheres and projective spaces." Illinois J. Math. 59 (1) 219 - 233, Spring 2015. https://doi.org/10.1215/ijm/1455203165
Information