Abstract
It is known that hyperbolic spaces have strict negative type, a condition on the distances of any finite subset of points. We show that they have strong negative type, a condition on every probability distribution of points (with integrable distance to a fixed point). This implies that the function of expected distances to points determines the probability measure uniquely. It also implies that the distance covariance test for stochastic independence, introduced by Székely, Rizzo and Bakirov, is consistent against all alternatives in hyperbolic spaces. We prove this by showing an analogue of the Cramér–Wold device.
Citation
Russell Lyons. "Hyperbolic space has strong negative type." Illinois J. Math. 58 (4) 1009 - 1013, Winter 2014. https://doi.org/10.1215/ijm/1446819297
Information