Open Access
Summer 2014 Sasaki manifolds, Kähler cone manifolds and biharmonic submanifolds
Hajime Urakawa
Illinois J. Math. 58(2): 521-535 (Summer 2014). DOI: 10.1215/ijm/1436275496

Abstract

For a Legendrian submanifold $M$ of a Sasaki manifold $N$, we study harmonicity and biharmonicity of the corresponding Lagrangian cone submanifold $C(M)$ of a Kähler manifold $C(N)$. We show that, if $C(M)$ is biharmonic in $C(N)$, then it is harmonic; and $M$ is proper biharmonic in $N$ if and only if $C(M)$ has a nonzero eigen-section of the Jacobi operator with the eigenvalue $m=\dim M$.

Citation

Download Citation

Hajime Urakawa. "Sasaki manifolds, Kähler cone manifolds and biharmonic submanifolds." Illinois J. Math. 58 (2) 521 - 535, Summer 2014. https://doi.org/10.1215/ijm/1436275496

Information

Received: 8 January 2014; Revised: 26 December 2014; Published: Summer 2014
First available in Project Euclid: 7 July 2015

zbMATH: 1330.58012
MathSciNet: MR3367661
Digital Object Identifier: 10.1215/ijm/1436275496

Subjects:
Primary: 58E20
Secondary: 53C43

Rights: Copyright © 2014 University of Illinois at Urbana-Champaign

Vol.58 • No. 2 • Summer 2014
Back to Top