Open Access
Spring 2013 Hilbert–Kunz functions of $2\times2$ determinantal rings
Lance Edward Miller, Irena Swanson
Illinois J. Math. 57(1): 251-277 (Spring 2013). DOI: 10.1215/ijm/1403534495

Abstract

Let $k$ be an arbitrary field (of arbitrary characteristic) and let $X=[x_{i,j}]$ be a generic $m\times n$ matrix of variables. Denote by $I_{2}(X)$ the ideal in $k[X]=k[x_{i,j}:i=1,\ldots,m;j=1,\ldots,n]$ generated by the $2\times2$ minors of $X$. Using Gröbner basis, we give a recursive formulation for the lengths of the $k[X]$-module $k[X]/(I_{2}(X)+(x_{1,1}^{q},\ldots,x_{m,n}^{q}))$ as $q$ varies over all positive integers. This is a generalized Hilbert–Kunz function, and our formulation proves that it is a polynomial function in $q$. We apply our method to give closed forms for these Hilbert–Kunz functions for cases $m\le2$.

Citation

Download Citation

Lance Edward Miller. Irena Swanson. "Hilbert–Kunz functions of $2\times2$ determinantal rings." Illinois J. Math. 57 (1) 251 - 277, Spring 2013. https://doi.org/10.1215/ijm/1403534495

Information

Published: Spring 2013
First available in Project Euclid: 23 June 2014

zbMATH: 1308.13026
MathSciNet: MR3224570
Digital Object Identifier: 10.1215/ijm/1403534495

Subjects:
Primary: 13D40
Secondary: 13H10 , 13H15 , 13P10

Rights: Copyright © 2013 University of Illinois at Urbana-Champaign

Vol.57 • No. 1 • Spring 2013
Back to Top