Abstract
We continue our study of the homological properties of the purely inseparable extensions $ \mathrm{H} \hookrightarrow\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}}$ of integrally closed unstable Noetherian integral domains over the Steenrod algebra. It turns out that the projective dimension of $\mathrm {H}$ is a lower bound for the projective dimension of $\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}}$. Furthermore, $\operatorname{depth} (\mathrm{H}) \geq\operatorname{depth}(\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}})$, where $\operatorname{depth}$ denotes the depth. Moreover, both algebras have the same global dimension. We apply these results to extension $\mathbb F[V_{\bullet}]^G \hookrightarrow\mathbb F[V]^G$ of rings of invariants.
Citation
Mara D. Neusel. "Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups II." Illinois J. Math. 55 (1) 5 - 14, Spring 2011. https://doi.org/10.1215/ijm/1355927024
Information