Open Access
Spring 2011 Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups II
Mara D. Neusel
Illinois J. Math. 55(1): 5-14 (Spring 2011). DOI: 10.1215/ijm/1355927024

Abstract

We continue our study of the homological properties of the purely inseparable extensions $ \mathrm{H} \hookrightarrow\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}}$ of integrally closed unstable Noetherian integral domains over the Steenrod algebra. It turns out that the projective dimension of $\mathrm {H}$ is a lower bound for the projective dimension of $\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}}$. Furthermore, $\operatorname{depth} (\mathrm{H}) \geq\operatorname{depth}(\!\!\sqrt[\mathcal{P}^*]{\mathrm{H}})$, where $\operatorname{depth}$ denotes the depth. Moreover, both algebras have the same global dimension. We apply these results to extension $\mathbb F[V_{\bullet}]^G \hookrightarrow\mathbb F[V]^G$ of rings of invariants.

Citation

Download Citation

Mara D. Neusel. "Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups II." Illinois J. Math. 55 (1) 5 - 14, Spring 2011. https://doi.org/10.1215/ijm/1355927024

Information

Published: Spring 2011
First available in Project Euclid: 19 December 2012

zbMATH: 1273.55008
MathSciNet: MR3006676
Digital Object Identifier: 10.1215/ijm/1355927024

Subjects:
Primary: 55S10
Secondary: 13A50

Rights: Copyright © 2011 University of Illinois at Urbana-Champaign

Vol.55 • No. 1 • Spring 2011
Back to Top