Open Access
Fall 2009 Idempotent subquotients of symmetric quasi-hereditary algebras
Volodymyr Mazorchuk, Vanessa Miemietz
Illinois J. Math. 53(3): 737-756 (Fall 2009). DOI: 10.1215/ijm/1286212913

Abstract

We show how any finite-dimensional algebra can be realized as an idempotent subquotient of some symmetric quasi-hereditary algebra. In the special case of rigid symmetric algebras, we show that they can be realized as centralizer subalgebras of symmetric quasi-hereditary algebras. We also show that the infinite-dimensional symmetric quasi-hereditary algebras we construct admit quasi-hereditary structures with respect to two opposite orders, that they have strong exact Borel and $Δ$-subalgebras and the corresponding triangular decompositions.

Citation

Download Citation

Volodymyr Mazorchuk. Vanessa Miemietz. "Idempotent subquotients of symmetric quasi-hereditary algebras." Illinois J. Math. 53 (3) 737 - 756, Fall 2009. https://doi.org/10.1215/ijm/1286212913

Information

Published: Fall 2009
First available in Project Euclid: 4 October 2010

zbMATH: 1227.16013
MathSciNet: MR2727352
Digital Object Identifier: 10.1215/ijm/1286212913

Subjects:
Primary: 16D90 , 16G10 , 16W10

Rights: Copyright © 2009 University of Illinois at Urbana-Champaign

Vol.53 • No. 3 • Fall 2009
Back to Top