Open Access
Spring 2009 A variational Henstock integral characterization of the Radon–Nikodým property
B. Bongiorno, L. Di Piazza, K. Musiał
Illinois J. Math. 53(1): 87-99 (Spring 2009). DOI: 10.1215/ijm/1264170840

Abstract

A characterization of Banach spaces possessing the Radon–Nikodým property is given in terms of finitely additive interval functions. We prove that a Banach space $X$ has the RNP if and only if each $X$-valued finitely additive interval function possessing absolutely continuous variational measure is a variational Henstock integral of an $X$-valued function. Due to that characterization several $X$-valued set functions that are only finitely additive can be represented as integrals.

Citation

Download Citation

B. Bongiorno. L. Di Piazza. K. Musiał. "A variational Henstock integral characterization of the Radon–Nikodým property." Illinois J. Math. 53 (1) 87 - 99, Spring 2009. https://doi.org/10.1215/ijm/1264170840

Information

Published: Spring 2009
First available in Project Euclid: 22 January 2010

zbMATH: 1200.46021
MathSciNet: MR2584936
Digital Object Identifier: 10.1215/ijm/1264170840

Subjects:
Primary: 26A39 , 28B05 , 46G05 , 46G10 , 58C20

Rights: Copyright © 2009 University of Illinois at Urbana-Champaign

Vol.53 • No. 1 • Spring 2009
Back to Top