Open Access
Summer 2007 Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold
Ahmad El Soufi, Saïd Ilias
Illinois J. Math. 51(2): 645-666 (Summer 2007). DOI: 10.1215/ijm/1258138436

Abstract

For any bounded regular domain $\Omega$ of a real analytic Riemannian manifold $M$ we denote by $\lambda_{k}(\Omega)$ the $k$-th eigenvalue of the Dirichlet Laplacian of $\Omega$. In this paper, we consider $\lambda_k$ as a functional on the set of domains of fixed volume in $M$. We introduce and investigate a natural notion of critical domain for this functional. In particular, we obtain necessary and sufficient conditions for a domain to be critical, locally minimizing or locally maximizing for $\lambda_k$. These results rely on Hadamard type variational formulae that we establish in this general setting.

As an application, we obtain a characterization of critical domains of the trace of the heat kernel under Dirichlet boundary conditions.

Citation

Download Citation

Ahmad El Soufi. Saïd Ilias. "Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold." Illinois J. Math. 51 (2) 645 - 666, Summer 2007. https://doi.org/10.1215/ijm/1258138436

Information

Published: Summer 2007
First available in Project Euclid: 13 November 2009

zbMATH: 1124.49035
MathSciNet: MR2342681
Digital Object Identifier: 10.1215/ijm/1258138436

Subjects:
Primary: 58J50
Secondary: 35P05 , 35P20 , 58J32

Rights: Copyright © 2007 University of Illinois at Urbana-Champaign

Vol.51 • No. 2 • Summer 2007
Back to Top