Open Access
Summer 2005 Intersection cohomology of stratified circle actions
G. Padilla
Illinois J. Math. 49(2): 659-685 (Summer 2005). DOI: 10.1215/ijm/1258138038

Abstract

For any stratified pseudomanifold $X$ and any action of the unit circle $\mathbb{S}^1$ on $X$ preserving the stratification and the local structure, the orbit space $X/\mathbb{S}^1$ is also a stratified pseudomanifold. For each perversity $\overline{q}$ in $X$ the orbit map $\pi : X/\mathbb{S}^1$ induces a Gysin sequence relating the $\overline{q}$-intersection cohomologies of $X$ and $X/\mathbb{S}^1$. The third term of this sequence can be given by means of a spectral sequence on $X/\mathbb{S}^1 whose second term is the cohomology of the set of fixed points $X^{S^{1}}$ with values on a constructible sheaf.

Citation

Download Citation

G. Padilla. "Intersection cohomology of stratified circle actions." Illinois J. Math. 49 (2) 659 - 685, Summer 2005. https://doi.org/10.1215/ijm/1258138038

Information

Published: Summer 2005
First available in Project Euclid: 13 November 2009

zbMATH: 1119.57009
MathSciNet: MR2164356
Digital Object Identifier: 10.1215/ijm/1258138038

Subjects:
Primary: 57N80
Secondary: 55N33 , 57R30

Rights: Copyright © 2005 University of Illinois at Urbana-Champaign

Vol.49 • No. 2 • Summer 2005
Back to Top