Open Access
Winter 2004 Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations
Yonggeun Cho, Yongsun Shim
Illinois J. Math. 48(4): 1081-1092 (Winter 2004). DOI: 10.1215/ijm/1258138500

Abstract

Let $Tf(x,t) = e^{2\pi it\phi(D)}f(x)$ be the solution of the general dispersive equation with phase $\phi$ and initial data $f$ in the Sobolev space $H^s$. We prove a weighted $L^2$ estimate for the global maximal operator $T^{**}$ defined by taking the supremum over the time variable $t \in \mathbb{R}$ so that $ \|T^{**}f\|_{L^2(w\,dx)} \le C\|f\|_{H^s}$. The exponent $s$ depends on the phase function $\phi$, whose gradient may vanish or have singularities.

Citation

Download Citation

Yonggeun Cho. Yongsun Shim. "Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations." Illinois J. Math. 48 (4) 1081 - 1092, Winter 2004. https://doi.org/10.1215/ijm/1258138500

Information

Published: Winter 2004
First available in Project Euclid: 13 November 2009

zbMATH: 1070.42011
MathSciNet: MR2113666
Digital Object Identifier: 10.1215/ijm/1258138500

Subjects:
Primary: 42B25
Secondary: 35J10 , 35Q40 , 42A45

Rights: Copyright © 2004 University of Illinois at Urbana-Champaign

Vol.48 • No. 4 • Winter 2004
Back to Top