Open Access
Summer 2004 A fractional order Hardy inequality
Bartłomiej Dyda
Illinois J. Math. 48(2): 575-588 (Summer 2004). DOI: 10.1215/ijm/1258138400

Abstract

We investigate the following integral inequality:

\[ \int_D \frac{|u(x)|^p}{\dist(x, D^c)^\alpha} dx \leq c \int_D \!\int_D \frac{|u(x)-u(y)|^p}{|x-y|^{d+\alpha}} dx\,dy, \quad u\in C_c(D), \]

where $\alpha,p>0$ and $D\subset \Rd$ is a Lipschitz domain or its complement or a complement of a point.

Citation

Download Citation

Bartłomiej Dyda. "A fractional order Hardy inequality." Illinois J. Math. 48 (2) 575 - 588, Summer 2004. https://doi.org/10.1215/ijm/1258138400

Information

Published: Summer 2004
First available in Project Euclid: 13 November 2009

zbMATH: 1068.26014
MathSciNet: MR2085428
Digital Object Identifier: 10.1215/ijm/1258138400

Subjects:
Primary: 26D15
Secondary: 46E35

Rights: Copyright © 2004 University of Illinois at Urbana-Champaign

Vol.48 • No. 2 • Summer 2004
Back to Top