Abstract
We discuss vanishing of cohomology of finite modules over Cohen-Macaulay local rings $(R, \mathfrak m)$. Special attention is given to the case when the modules are annihilated by $\mathfrak m^2$. (Note that if $\mathfrak m^3=0$, then we can assume the modules satisfy this condition.) In this case we obtain effective versions of conjectures of Auslander-Reiten and Tachikawa.
Citation
Craig Huneke. Adela N. Vraciu. Liana M. Şega. "Vanishing of Ext and Tor over some Cohen-Macaulay local rings." Illinois J. Math. 48 (1) 295 - 317, Spring 2004. https://doi.org/10.1215/ijm/1258136185
Information