Open Access
Winter 2003 Transference of bilinear multiplier operators on Lorentz spaces
Oscar Blasco, Francisco Villarroya
Illinois J. Math. 47(4): 1327-1343 (Winter 2003). DOI: 10.1215/ijm/1258138107

Abstract

Let $m(\xi,\eta)$ be a bounded continuous function in $\mathbb{R}\times\mathbb{R}$, let $0< p_i,q_i<\infty$ for $i=1,2$, and let $0<p_3,q_3\le\infty$, be such that $1/p_1+1/p_2=1/p_3$. It is shown that

\[ C_m (f,g)(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \hat f(\xi) \hat g(\eta) m(\xi,\eta) e^{2\pi i x(\xi +\eta )}d\xi d\eta \]

is a bounded bilinear operator from $L^{p_1,q_1}(\mathbb{R})\times L^{p_2,q_2}(\mathbb{R})$ into $L^{p_3,q_3}(\mathbb{R})$ if and only if

\[ P_{D_{\varepsilon^{-1}}m} (f,g)(\theta)=\sum_{k\in \mathbb{Z}} \sum_{k'\in \mathbb{Z}} \hat f(k) \hat g(k') m(\varepsilon k, \varepsilon k') e^{2\pi i \theta(k +k' )} \]

are bounded bilinear operators from $L^{p_1,q_1}(\T)\times L^{p_2,q_2}(\T)$ into $L^{p_3,q_3}(\T)$ with norm bounded by a uniform constant for all $\epsilon >0$.

Citation

Download Citation

Oscar Blasco. Francisco Villarroya. "Transference of bilinear multiplier operators on Lorentz spaces." Illinois J. Math. 47 (4) 1327 - 1343, Winter 2003. https://doi.org/10.1215/ijm/1258138107

Information

Published: Winter 2003
First available in Project Euclid: 13 November 2009

zbMATH: 1056.42010
MathSciNet: MR2037006
Digital Object Identifier: 10.1215/ijm/1258138107

Subjects:
Primary: 42A45

Rights: Copyright © 2003 University of Illinois at Urbana-Champaign

Vol.47 • No. 4 • Winter 2003
Back to Top