Open Access
Fall 2003 Castelnuovo-Mumford regularity and degrees of generators of graded submodules
Markus Brodmann
Illinois J. Math. 47(3): 749-767 (Fall 2003). DOI: 10.1215/ijm/1258138192

Abstract

We extend the regularity criterion of Bayer-Stillman for a graded ideal $\mathfrak {a}$ of a polynomial ring $K[\underline {\bf x}] := K [\underline {\bf x}_0, \dots , {\bf x}_r]$ over an infinite field $K$ to the situation of a graded submodule $M$ of a finitely generated graded module $U$ over a Noetherian homogeneous ring $R = \oplus_{n \geq 0}R_n$, whose base ring $R_0$ has infinite residue fields. If $R_0$ is Artinian, we construct a polynomial $\widetilde{P} \in {\mathbb Q}[{\bf x}]$, depending only on the Hilbert polynomial of $U$, such that $\operatorname{reg}(M) \leq \widetilde{P} ( \max \{ d(M), \operatorname{reg}(U) + 1 \} ) $, where $d(M)$ is the generating degree of $M$. This extends the regularity bound of Bayer-Mumford for a graded ideal $\mathfrak {a} \subseteq K[\underline {\bf x}]$ over a field $K$ to the pair $M \subseteq U$.

Citation

Download Citation

Markus Brodmann. "Castelnuovo-Mumford regularity and degrees of generators of graded submodules." Illinois J. Math. 47 (3) 749 - 767, Fall 2003. https://doi.org/10.1215/ijm/1258138192

Information

Published: Fall 2003
First available in Project Euclid: 13 November 2009

zbMATH: 1071.13006
MathSciNet: MR2007235
Digital Object Identifier: 10.1215/ijm/1258138192

Subjects:
Primary: 13D45
Secondary: 13D40

Rights: Copyright © 2003 University of Illinois at Urbana-Champaign

Vol.47 • No. 3 • Fall 2003
Back to Top