Abstract
A group is called capable if it is a central factor group. Let ${\mathcal{P}}$ denote the class of finite $p$-groups of odd order and nilpotency class 2. In this paper we determine the capable 2-generator groups in ${\mathcal{P}}$. Using the explicit knowledge of the nonabelian tensor square of 2-generator groups in ${\mathcal {P}}$, we first determine the epicenter of these groups and then identify those with trivial epicenter, making use of the fact that a group has trivial epicenter if and only if it is capable. A capable group in ${\mathcal{P}}$ has the two generators of highest order in a minimal generating set of equal order. However, this condition is not sufficient for capability in ${\mathcal{P}}$. Furthermore, various homological functors, among them the exterior square, the symmetric square and the Schur multiplier, are determined for the 2-generator groups in ${\mathcal{P}}$.
Citation
Michael R. Bacon. Luise-Charlotte Kappe. "On capable $p$-groups of nilpotency class two." Illinois J. Math. 47 (1-2) 49 - 62, Spring/Summer 2003. https://doi.org/10.1215/ijm/1258488137
Information