Open Access
Winter 2002 The McShane and the Pettis integral of Banach space-valued functions defined on ${\Bbb R}\sp m$
Štefan Schwabik, Guoju Ye
Illinois J. Math. 46(4): 1125-1144 (Winter 2002). DOI: 10.1215/ijm/1258138470

Abstract

In this paper, we define and study the McShane integral of functions mapping a compact interval $I_0$ in $R^m$ into a Banach space $X$. We compare this integral with the Pettis integral and prove, in particular, that the two integrals are equivalent if $X$ is reflexive and the unit ball of the dual $X^*$ satisfies an additional condition (P). This gives additional information on an implicitly stated open problem of R.A. Gordon and on the work of D.H. Fremlin and J. Mendoza.

Citation

Download Citation

Štefan Schwabik. Guoju Ye. "The McShane and the Pettis integral of Banach space-valued functions defined on ${\Bbb R}\sp m$." Illinois J. Math. 46 (4) 1125 - 1144, Winter 2002. https://doi.org/10.1215/ijm/1258138470

Information

Published: Winter 2002
First available in Project Euclid: 13 November 2009

zbMATH: 1038.28009
MathSciNet: MR1988254
Digital Object Identifier: 10.1215/ijm/1258138470

Subjects:
Primary: 28B05
Secondary: 26A39 , 46G10

Rights: Copyright © 2002 University of Illinois at Urbana-Champaign

Vol.46 • No. 4 • Winter 2002
Back to Top