Open Access
Spring 2001 Dunford-Pettis and Dieudonné polynomials on Banach spaces
Maite Fernández-Unzueta
Illinois J. Math. 45(1): 291-307 (Spring 2001). DOI: 10.1215/ijm/1258138269

Abstract

We introduce two classes of $m$-homogeneous polynomials defined on Banach spaces, which extend the classes of Dunford-Pettis and Dieudonné linear operators. These extensions allow us to prove that several characterization theorems related to the Dunford-Pettis, Schur, and reciprocal Dunford-Pettis properties, are also valid in the more general case of homogeneous polynomials of any degree $m\in\N$.

Citation

Download Citation

Maite Fernández-Unzueta. "Dunford-Pettis and Dieudonné polynomials on Banach spaces." Illinois J. Math. 45 (1) 291 - 307, Spring 2001. https://doi.org/10.1215/ijm/1258138269

Information

Published: Spring 2001
First available in Project Euclid: 13 November 2009

zbMATH: 0998.46018
MathSciNet: MR1850000
Digital Object Identifier: 10.1215/ijm/1258138269

Subjects:
Primary: 46G25
Secondary: 46B28

Rights: Copyright © 2001 University of Illinois at Urbana-Champaign

Vol.45 • No. 1 • Spring 2001
Back to Top