Translator Disclaimer
2014 $L_{\infty}$-algebras of local observables from higher prequantum bundles
Domenico Fiorenza, Christopher L. Rogers, Urs Schreiber
Homology Homotopy Appl. 16(2): 107-142 (2014).


To any manifold equipped with a higher degree closed form, one can associate an $L_\infty$-algebra of local observables that generalizes the Poisson algebra of a symplectic manifold. Here, by means of an explicit homotopy equivalence, we interpret this $L_\infty$-algebra in terms of infinitesimal autoequivalences of higher prequantum bundles. By truncating the connection data on the prequantum bundle, we produce analogues of the (higher) Lie algebras of sections of the Atiyah Lie algebroid and of the Courant Lie 2-algebroid. We also exhibit the $L_\infty$-cocycle that realizes the $L_\infty$-algebra of local observables as a Kirillov-Kostant-Souriau-type $L_\infty$-extension of the Hamiltonian vector fields. When restricted along a Lie algebra action, this yields Heisenberg-like $L_\infty$-algebras such as the string Lie 2-algebra of a semisimple Lie algebra.


Download Citation

Domenico Fiorenza. Christopher L. Rogers. Urs Schreiber. "$L_{\infty}$-algebras of local observables from higher prequantum bundles." Homology Homotopy Appl. 16 (2) 107 - 142, 2014.


Published: 2014
First available in Project Euclid: 22 August 2014

zbMATH: 06416957
MathSciNet: MR3241135

Primary: 18G55, 53C08, 53D50

Rights: Copyright © 2014 International Press of Boston


Vol.16 • No. 2 • 2014
Back to Top