Open Access
2012 Weight structure on Kontsevich's noncommutative mixed motives
Gonçalo Tabuada
Homology Homotopy Appl. 14(2): 129-142 (2012).

Abstract

In this article we endow Kontsevich’s triangulated category $\mathrm{KMM}_k$ of noncommutative mixed motives with a nondegenerate weight structure in the sense of Bondarko. As an application we obtain: (1) a convergent weight spectral sequence for every additive invariant (e.g., algebraic $K$-theory, cyclic homology, topological Hochschild homology, etc.); (2) a ring isomorphism between $K_0(\mathrm{KMM}_k)$ and the Grothendieck ring of the category of noncommutative Chow motives; (3) a precise relationship between Voevodsky’s (virtual) mixed motives and Kontsevich’s noncommutative (virtual) mixed motives.

Citation

Download Citation

Gonçalo Tabuada. "Weight structure on Kontsevich's noncommutative mixed motives." Homology Homotopy Appl. 14 (2) 129 - 142, 2012.

Information

Published: 2012
First available in Project Euclid: 12 December 2012

zbMATH: 1327.14018
MathSciNet: MR3007089

Subjects:
Primary: 14A22 , 18D20 , 18G40 , 19L10

Keywords: Grothendieck ring , Kontsevich noncommutative motive , Picard group , Voevodsky motive , weight spectral sequence , Weight structure

Rights: Copyright © 2012 International Press of Boston

Vol.14 • No. 2 • 2012
Back to Top