Translator Disclaimer
February 2019 On the annihilators of formal local cohomology modules
Shahram REZAEI
Hokkaido Math. J. 48(1): 195-206 (February 2019). DOI: 10.14492/hokmj/1550480649

Abstract

Let $\frak{a}$ denote an ideal in a commutative Noetherian local ring $(R,\frak{m})$ and $M$ a non-zero finitely generated $R$-module of dimension $d$. Let $d:=\dim(M/\frak{a} M)$. In this paper we calculate the annihilator of the top formal local cohomology module $\mathfrak{F}_{\frak{a}}^d (M)$. In fact, we prove that ${\rm Ann}_R(\mathfrak{F}_{\frak{a}}^d (M))={\rm Ann}_R(M/U_R(\frak{a}, M))$, where $$ U_R(\frak{a}, M):=\cup\lbrace N: N\leqslant M \text{ and } \dim(N/\frak{a}N) \lt \dim(M/\frak{a}M) \rbrace. $$ We give a description of $U_R(\frak{a}, M)$ and we will show that $$ {\rm Ann}_R (\mathfrak{F}_{\frak{a}}^d(M)) = {\rm Ann}_R (M/\cap_{\frak{p}_j \in {\rm Assh}_R M \cap {\rm V}(\frak{a})} N_j), $$ where $0=\bigcap_{j=1}^{n} N_{j}$ denotes a reduced primary decomposition of the zero submodule $0$ in $M$ and $N_j$ is a $\frak{p}_j$-primary submodule of $M$, for all $j=1,\dots, n$. Also, we determine the radical of the annihilator of $\mathfrak{F}_{\frak{a}}^d (M)$. We will prove that $$ \sqrt{{\rm Ann}_R(\mathfrak{F}_{\frak{a}}^d (M))} = {\rm Ann}_R(M/G_R(\frak{a}, M)), $$ where $G_R(\frak{a}, M)$ denotes the largest submodule of $M$ such that ${\rm Assh}_R(M)\cap {\rm V}(\frak{a}) \subseteq {\rm Ass}_R(M/G_R(\frak{a}, M))$ and ${\rm Assh}_R(M)$ denotes the set $\{\frak{p} \in {\rm Ass} M:\dim R/\frak{p} = \dim M\}.$

Citation

Download Citation

Shahram REZAEI. "On the annihilators of formal local cohomology modules." Hokkaido Math. J. 48 (1) 195 - 206, February 2019. https://doi.org/10.14492/hokmj/1550480649

Information

Published: February 2019
First available in Project Euclid: 18 February 2019

zbMATH: 07055600
MathSciNet: MR3914174
Digital Object Identifier: 10.14492/hokmj/1550480649

Subjects:
Primary: 13D45, 13E05

Rights: Copyright © 2019 Hokkaido University, Department of Mathematics

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.48 • No. 1 • February 2019
Back to Top