Open Access
October 2018 Topological bi-$\mathcal{K}$-equivalence of pairs of map germs
Lev BIRBRAIR, João Carlos Ferreira COSTA, Edvalter Da Silva Sena FILHO
Hokkaido Math. J. 47(3): 545-556 (October 2018). DOI: 10.14492/hokmj/1537948830

Abstract

Let $P^{k}(n,p \times q)$ be the set of all pairs of real polynomial map germs $(f, g) : (\mathbb{R}^{n},0) \rightarrow (\mathbb{R}^{p} \times \mathbb{R}^{q} ,0)$ with degree of $ f_1 , \dots, f_p ,$ $g_1 ,\dots, g_q$ less than or equal to $k \in \N$. The main result of this paper shows that the set of equivalence classes of $P^{k}(n,p \times q)$, with respect to bi-$C^{0}$-$\mathcal{K}$-equivalence, is finite.

Citation

Download Citation

Lev BIRBRAIR. João Carlos Ferreira COSTA. Edvalter Da Silva Sena FILHO. "Topological bi-$\mathcal{K}$-equivalence of pairs of map germs." Hokkaido Math. J. 47 (3) 545 - 556, October 2018. https://doi.org/10.14492/hokmj/1537948830

Information

Published: October 2018
First available in Project Euclid: 26 September 2018

zbMATH: 06959103
MathSciNet: MR3858378
Digital Object Identifier: 10.14492/hokmj/1537948830

Subjects:
Primary: 32S05 , 32S15

Keywords: finiteness theorem , pairs of map germs , topological classification , topological contact equivalence

Rights: Copyright © 2018 Hokkaido University, Department of Mathematics

Vol.47 • No. 3 • October 2018
Back to Top