Abstract
In the present paper, we prove the {\it finiteness} of the set of {\it moderate} rational points of a once-punctured elliptic curve over a number field. This {\it finiteness} may be regarded as an analogue for a once-punctured elliptic curve of the well-known {\it finiteness} of the set of torsion rational points of an abelian variety over a number field. In order to obtain the {\it finiteness}, we discuss the {\it center} of the image of the pro-$l$ outer Galois action associated to a hyperbolic curve. In particular, we give, under the assumption that $l$ is {\it odd}, a {\it necessary and sufficient condition} for a certain hyperbolic curve over a generalized sub-$l$-adic field to have {\it trivial center}.
Citation
Yuichiro HOSHI. "Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves." Hokkaido Math. J. 45 (2) 271 - 291, June 2016. https://doi.org/10.14492/hokmj/1470139405
Information