Abstract
Let $M_b$ be the operator of pointwise multiplication by $b$, that is $M_b f=bf$. Set $[A,B]=AB-BA$. The Reisz potentials are the operators $R_\alpha f(x)=\int f(x-y)\frac{dy}{\abs y ^{\alpha} }, 0<\alpha<1.$ They map $L^p\mapsto L^q$, for $1-\alpha+\frac{1}{q}=\frac{1}{p}$, a fact we shall take for granted in this paper. A Theorem of Chanillo [6] states that one has the equivalence $||[M_b,R_\alpha]||_{p\to q}\simeq ||b||_{BMO}$ with the later norm being that of the space of functions of bounded mean oscillation. We discuss a proof of this result in a discrete setting, and extend part of the equivalence above to the higher parameter setting.
Citation
Michael T. LACEY. "Commutators with Reisz potentials in one and several parameters." Hokkaido Math. J. 36 (1) 175 - 191, February 2007. https://doi.org/10.14492/hokmj/1285766657
Information