Open Access
Translator Disclaimer
2011 An application of capacitary functions to an inverse inclusion problem
Mitsuru Nakai
Hiroshima Math. J. 41(2): 223-233 (2011). DOI: 10.32917/hmj/1314204563

Abstract

An efficient application of capacitary functions for compact subsets of the Royden harmonic boundary to an inverse inclusion problem concerning spaces of Dirichlet finite and mean bounded harmonic functions in the classification theory of Riemann surfaces is given.

Citation

Download Citation

Mitsuru Nakai. "An application of capacitary functions to an inverse inclusion problem." Hiroshima Math. J. 41 (2) 223 - 233, 2011. https://doi.org/10.32917/hmj/1314204563

Information

Published: 2011
First available in Project Euclid: 24 August 2011

zbMATH: 1254.30062
MathSciNet: MR2849156
Digital Object Identifier: 10.32917/hmj/1314204563

Subjects:
Primary: 30F25
Secondary: 30F15 , 30F20 , 31A15

Keywords: Capacitary function , capacity , Dirichlet integral , Royden harmonic boundary , Wiener harmonic boundary

Rights: Copyright © 2011 Hiroshima University, Mathematics Program

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.41 • No. 2 • 2011
Back to Top