Abstract
The $L^{(\alpha)}$-harmonic function is the solution of the parabolic operator $L^{(\alpha)}= \partial_{t}+(-\Delta_{x})^{\alpha}$. We study a function space $\widetilde{{\cal B}}_{\alpha}(\sigma)$ consisting of $L^{(\alpha)}$-harmonic functions of parabolic Bloch type. In particular, we give a reproducing formula for functions in $\widetilde{{\cal B}}_{\alpha}(\sigma)$. Furthermore, we study the fractional calculus on $\widetilde{{\cal B}}_{\alpha}(\sigma)$. As an application, we also give a reproducing formula with fractional orders for functions in $\widetilde{{\cal B}}_{\alpha}(\sigma)$. Moreover, we investigate the dual and pre-dual spaces of function spaces of parabolic Bloch type.
Citation
Yôsuke Hishikawa. Masahiro Yamada. "Function spaces of parabolic Bloch type." Hiroshima Math. J. 41 (1) 55 - 87, March 2011. https://doi.org/10.32917/hmj/1301586290
Information