2020 Pluripotential Kähler–Ricci flows
Vincent Guedj, Chinh H Lu, Ahmed Zeriahi
Geom. Topol. 24(3): 1225-1296 (2020). DOI: 10.2140/gt.2020.24.1225

Abstract

We develop a parabolic pluripotential theory on compact Kähler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge–Ampère equations. We provide a parabolic analogue of the celebrated Bedford–Taylor theory and apply it to the study of the Kähler–Ricci flow on varieties with log terminal singularities.

Citation

Download Citation

Vincent Guedj. Chinh H Lu. Ahmed Zeriahi. "Pluripotential Kähler–Ricci flows." Geom. Topol. 24 (3) 1225 - 1296, 2020. https://doi.org/10.2140/gt.2020.24.1225

Information

Received: 7 November 2018; Revised: 12 August 2019; Accepted: 23 September 2019; Published: 2020
First available in Project Euclid: 6 October 2020

zbMATH: 07256606
MathSciNet: MR4157554
Digital Object Identifier: 10.2140/gt.2020.24.1225

Subjects:
Primary: 53C44
Secondary: 32W20 , 58J35

Keywords: Kähler–Ricci flow , parabolic Monge–Ampère equation , Perron envelope , pluripotential solution

Rights: Copyright © 2020 Mathematical Sciences Publishers

JOURNAL ARTICLE
72 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.24 • No. 3 • 2020
MSP
Back to Top