Open Access
Translator Disclaimer
2016 The metric geometry of the Hamming cube and applications
Florent Baudier, Daniel Freeman, Thomas Schlumprecht, András Zsák
Geom. Topol. 20(3): 1427-1444 (2016). DOI: 10.2140/gt.2016.20.1427

Abstract

The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight estimates on the distortion necessary to embed the segments into spaces of continuous functions on countable compact metric spaces are given. As an application, the first nontrivial lower bounds on the C(K)–distortion of important classes of separable Banach spaces, where K is a countable compact space in the family {[0,ω],[0,ω 2],,[0,ω2],,[0,ωk n],,[0,ωω]} are obtained.

Citation

Download Citation

Florent Baudier. Daniel Freeman. Thomas Schlumprecht. András Zsák. "The metric geometry of the Hamming cube and applications." Geom. Topol. 20 (3) 1427 - 1444, 2016. https://doi.org/10.2140/gt.2016.20.1427

Information

Received: 21 March 2014; Revised: 31 May 2015; Accepted: 10 July 2015; Published: 2016
First available in Project Euclid: 16 November 2017

zbMATH: 1354.46021
MathSciNet: MR3523061
Digital Object Identifier: 10.2140/gt.2016.20.1427

Subjects:
Primary: 46B20, 46B80
Secondary: 46B85

Rights: Copyright © 2016 Mathematical Sciences Publishers

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.20 • No. 3 • 2016
MSP
Back to Top