Open Access
2011 A short proof of the Göttsche conjecture
Martijn Kool, Vivek Shende, Richard P Thomas
Geom. Topol. 15(1): 397-406 (2011). DOI: 10.2140/gt.2011.15.397

Abstract

We prove that for a sufficiently ample line bundle L on a surface S, the number of δ–nodal curves in a general δ–dimensional linear system is given by a universal polynomial of degree δ in the four numbers L2,L.KS,KS2 and c2(S).

The technique is a study of Hilbert schemes of points on curves on a surface, using the BPS calculus of Pandharipande and the third author [J. Amer. Math. Soc. 23 (2010) 267–297] and the computation of tautological integrals on Hilbert schemes by Ellingsrud, Göttsche and Lehn [J. Algebraic Geom. 10 (2001) 81–100].

We are also able to weaken the ampleness required, from Göttsche’s (5δ1)–very ample to δ–very ample.

Citation

Download Citation

Martijn Kool. Vivek Shende. Richard P Thomas. "A short proof of the Göttsche conjecture." Geom. Topol. 15 (1) 397 - 406, 2011. https://doi.org/10.2140/gt.2011.15.397

Information

Received: 2 November 2010; Accepted: 12 December 2010; Published: 2011
First available in Project Euclid: 20 December 2017

zbMATH: 1210.14011
MathSciNet: MR2776848
Digital Object Identifier: 10.2140/gt.2011.15.397

Subjects:
Primary: 14C05 , 14N10
Secondary: 14C20 , 14N35

Keywords: counting nodal curves on surfaces , Goettsche conjecture , Göttsche conjecture

Rights: Copyright © 2011 Mathematical Sciences Publishers

Vol.15 • No. 1 • 2011
MSP
Back to Top