Open Access
March 2015 Imaginary quadratic fields with 2-class group of type $(2,2^\ell)$
Adele Lopez
Funct. Approx. Comment. Math. 52(1): 37-55 (March 2015). DOI: 10.7169/facm/2015.52.1.3
Abstract

We prove that for any given positive integer $\ell$ there are infinitely many imaginary quadratic fields with 2-class group of type $(2,2^\ell)$, and provide a lower bound for the number of such groups with bounded discriminant for $\ell\ge2$. This work is based on a related result for cyclic 2-class groups by Dominguez, Miller and Wong, and our proof proceeds similarly. Our proof requires introducing congruence conditions into Perelli's result on Goldbach numbers represented by polynomials, which we establitish in some generality.

References

1.

N.C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321–324.  MR85301 10.2140/pjm.1955.5.321 euclid.pjm/1103044454 N.C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321–324.  MR85301 10.2140/pjm.1955.5.321 euclid.pjm/1103044454

2.

A. Balog and K. Ono, Elements of class groups and Shafarevich-Tate groups of elliptic curves, Duke Math. J. 120(1) (2003), 35–63.  MR2010733 10.1215/S0012-7094-03-12012-8 euclid.dmj/1082138624 A. Balog and K. Ono, Elements of class groups and Shafarevich-Tate groups of elliptic curves, Duke Math. J. 120(1) (2003), 35–63.  MR2010733 10.1215/S0012-7094-03-12012-8 euclid.dmj/1082138624

3.

E. Benjamin, F. Lemmermeyer, and C. Snyder, Imaginary quadratic fields $k$ with cyclic ${\rm Cl}_2(k^1)$, J. Number Theory 67(2) (1997), 229–245.  MR1486501 10.1006/jnth.1997.2174 E. Benjamin, F. Lemmermeyer, and C. Snyder, Imaginary quadratic fields $k$ with cyclic ${\rm Cl}_2(k^1)$, J. Number Theory 67(2) (1997), 229–245.  MR1486501 10.1006/jnth.1997.2174

4.

D.A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1989, Fermat, class field theory and complex multiplication.  MR1028322 D.A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1989, Fermat, class field theory and complex multiplication.  MR1028322

5.

C. Dominguez, S.J. Miller, and S. Wong, Quadratic fields with cyclic 2-class groups, Journal of Number Theory (to appear).  MR2997776 10.1016/j.jnt.2012.02.019 C. Dominguez, S.J. Miller, and S. Wong, Quadratic fields with cyclic 2-class groups, Journal of Number Theory (to appear).  MR2997776 10.1016/j.jnt.2012.02.019

6.

P.X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339.  MR279049 10.1007/BF01403187 P.X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339.  MR279049 10.1007/BF01403187

7.

H. Hasse, An algorithm for determining the structure of the $2$-Sylow-subgroups of the divisor class group of a quadratic number field, in Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), pages 341–352, Academic Press, London, 1975.  MR387239 H. Hasse, An algorithm for determining the structure of the $2$-Sylow-subgroups of the divisor class group of a quadratic number field, in Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), pages 341–352, Academic Press, London, 1975.  MR387239

8.

M.R. Murty, Exponents of class groups of quadratic fields, in Topics in number theory (University Park, PA, 1997), volume 467 of Math. Appl., pages 229–239. Kluwer Acad. Publ., Dordrecht, 1999.  MR1691322 M.R. Murty, Exponents of class groups of quadratic fields, in Topics in number theory (University Park, PA, 1997), volume 467 of Math. Appl., pages 229–239. Kluwer Acad. Publ., Dordrecht, 1999.  MR1691322

9.

M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62(3) (1992), 257–269.  MR1197420 M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62(3) (1992), 257–269.  MR1197420

10.

A. Perelli and J. Pintz, On the exceptional set for Goldbach's problem in short intervals, J. London Math. Soc. (2) 47(1) (1993), 41–49.  MR1200976 10.1112/jlms/s2-47.1.41 A. Perelli and J. Pintz, On the exceptional set for Goldbach's problem in short intervals, J. London Math. Soc. (2) 47(1) (1993), 41–49.  MR1200976 10.1112/jlms/s2-47.1.41

11.

A. Perelli, Goldbach numbers represented by polynomials, Rev. Mat. Iberoamericana 12(2) (1996), 477–490.  MR1402675 10.4171/RMI/205 A. Perelli, Goldbach numbers represented by polynomials, Rev. Mat. Iberoamericana 12(2) (1996), 477–490.  MR1402675 10.4171/RMI/205

12.

L. Rédei, Die $2$-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung, Acta Math. Acad. Sci. Hungar. 4 (1953), 31–87. L. Rédei, Die $2$-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung, Acta Math. Acad. Sci. Hungar. 4 (1953), 31–87.

13.

K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. (2) 61(3) (2000), 681–690.  MR1766097 10.1112/S0024610700008887 K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. (2) 61(3) (2000), 681–690.  MR1766097 10.1112/S0024610700008887

14.

R.C. Vaughan, The Hardy-Littlewood method, volume 125 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, second edition, 1997.  MR1435742 R.C. Vaughan, The Hardy-Littlewood method, volume 125 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, second edition, 1997.  MR1435742

15.

A. Walfisz, Zur additiven Zahlentheorie. II, Math. Z. 40(1) (1936), 592–607.  MR1545584 10.1007/BF01218882 A. Walfisz, Zur additiven Zahlentheorie. II, Math. Z. 40(1) (1936), 592–607.  MR1545584 10.1007/BF01218882
Copyright © 2015 Adam Mickiewicz University
Adele Lopez "Imaginary quadratic fields with 2-class group of type $(2,2^\ell)$," Functiones et Approximatio Commentarii Mathematici 52(1), 37-55, (March 2015). https://doi.org/10.7169/facm/2015.52.1.3
Published: March 2015
Vol.52 • No. 1 • March 2015
Back to Top