Open Access
December 2014 Distinguishing eigenforms modulo a prime ideal
Sam Chow, Alexandru Ghitza
Funct. Approx. Comment. Math. 51(2): 363-377 (December 2014). DOI: 10.7169/facm/2014.51.2.8
Abstract

Consider the Fourier expansions of two elements of a given space of modular forms. How many leading coefficients must agree in order to guarantee that the two expansions are the same? Sturm [20] gave an upper bound for modular forms of a given weight and level. This was adapted by Ram Murty [16] and Ghitza [5] to the case of two eigenforms of the same level but having potentially different weights. We consider their expansions modulo a prime ideal, presenting a new bound. In the process of analysing this bound, we generalise a result of Bach and Sorenson [2], who provide a practical upper bound for the least prime in an arithmetic progression.

References

1.

E. Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), no. 191, 355–380. MR1023756 10.1090/S0025-5718-1990-1023756-8 E. Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation 55 (1990), no. 191, 355–380. MR1023756 10.1090/S0025-5718-1990-1023756-8

2.

E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Mathematics of Computation 65 (1996), 1717–1735. MR1355006 10.1090/S0025-5718-96-00763-6 E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Mathematics of Computation 65 (1996), 1717–1735. MR1355006 10.1090/S0025-5718-96-00763-6

3.

Z.I. Borevich and I.R. Shafarevich, Number Theory, Academic Press, 1966. MR195803 Z.I. Borevich and I.R. Shafarevich, Number Theory, Academic Press, 1966. MR195803

4.

F. Diamond and J. Shurman, A first course in modular forms, Springer, 2005. MR2112196 F. Diamond and J. Shurman, A first course in modular forms, Springer, 2005. MR2112196

5.

A. Ghitza, Distinguishing Hecke eigenforms, International Journal of Number Theory 7 (2011), 1247–1253. MR2825970 10.1142/S1793042111004708 A. Ghitza, Distinguishing Hecke eigenforms, International Journal of Number Theory 7 (2011), 1247–1253. MR2825970 10.1142/S1793042111004708

6.

D. Goldfeld and J. Hoffstein, On the number of terms that determine a modular form, Contemp. Math., AMS, 143 (1993), 385–393. MR1210527 10.1090/conm/143/01006 D. Goldfeld and J. Hoffstein, On the number of terms that determine a modular form, Contemp. Math., AMS, 143 (1993), 385–393. MR1210527 10.1090/conm/143/01006

7.

B. Gross, A tameness criterion for Galois representations associated to modular forms (mod $p$), Duke Mathematical Journal 61 (1990), no. 2, 445–517. MR1074305 10.1215/S0012-7094-90-06119-8 euclid.dmj/1077296826 B. Gross, A tameness criterion for Galois representations associated to modular forms (mod $p$), Duke Mathematical Journal 61 (1990), no. 2, 445–517. MR1074305 10.1215/S0012-7094-90-06119-8 euclid.dmj/1077296826

8.

D.R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proceedings of the London Mathematical Society 64 (1992), no. 3, 265–338. MR1143227 10.1112/plms/s3-64.2.265 D.R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proceedings of the London Mathematical Society 64 (1992), no. 3, 265–338. MR1143227 10.1112/plms/s3-64.2.265

9.

N. Katz, $p$-adic properties of modular schemes and modular forms, Lecture Notes in Mathematics 350 (1973), Springer-Verlag, 69–190. MR447119 10.1007/978-3-540-37802-0_3 N. Katz, $p$-adic properties of modular schemes and modular forms, Lecture Notes in Mathematics 350 (1973), Springer-Verlag, 69–190. MR447119 10.1007/978-3-540-37802-0_3

10.

L. Kilford, Modular Forms: A classical and computational introduction, Imperial College Press, 2008. MR2441106 L. Kilford, Modular Forms: A classical and computational introduction, Imperial College Press, 2008. MR2441106

11.

W. Kohnen, On Fourier coefficients of modular forms of different weights, Acta Arithmetica 113 (2004), no. 1, 57–67. MR2046968 10.4064/aa113-1-5 W. Kohnen, On Fourier coefficients of modular forms of different weights, Acta Arithmetica 113 (2004), no. 1, 57–67. MR2046968 10.4064/aa113-1-5

12.

E. Kowalski, Variants of recognition problems for modular forms, Archiv der Mathematik 84 (2005), no. 1, 57–70. MR2106405 10.1007/s00013-004-1266-x E. Kowalski, Variants of recognition problems for modular forms, Archiv der Mathematik 84 (2005), no. 1, 57–70. MR2106405 10.1007/s00013-004-1266-x

13.

U.V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. (Mat. Sbornik) N.S., 15 (57) (1944), 139–178. MR12111 U.V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. (Mat. Sbornik) N.S., 15 (57) (1944), 139–178. MR12111

14.

U.V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Rec. Math. (Mat. Sbornik) N.S., 15 (57) (1944), 347–368. MR12112 U.V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Rec. Math. (Mat. Sbornik) N.S., 15 (57) (1944), 347–368. MR12112

15.

G. Martin, The least prime primitive root and the shifted sieve, Acta Arithmetica 80 (1997), no. 3, 277–288. MR1451414 G. Martin, The least prime primitive root and the shifted sieve, Acta Arithmetica 80 (1997), no. 3, 277–288. MR1451414

16.

M. Ram Murty, Congruences between modular forms, London Mathematical Society Lecture Note Series 247 (1997), Cambridge University Press, 309–320. MR1694998 10.1017/CBO9780511666179.020 M. Ram Murty, Congruences between modular forms, London Mathematical Society Lecture Note Series 247 (1997), Cambridge University Press, 309–320. MR1694998 10.1017/CBO9780511666179.020

17.

V. Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), 369–380. MR1106981 10.1090/S0025-5718-1992-1106981-9 V. Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), 369–380. MR1106981 10.1090/S0025-5718-1992-1106981-9

18.

W. Stein, Modular Forms, a Computational Approach, Graduate Studies in Mathematics 79, American Mathematical Society, 2007. With an appendix by Paul E. Gunnells. MR2289048 W. Stein, Modular Forms, a Computational Approach, Graduate Studies in Mathematics 79, American Mathematical Society, 2007. With an appendix by Paul E. Gunnells. MR2289048

19.

W. Stein et al., Sage Mathematics Software (Version 5.1), The Sage Development Team, 2012, http://www.sagemath.org. http://www.sagemath.org W. Stein et al., Sage Mathematics Software (Version 5.1), The Sage Development Team, 2012, http://www.sagemath.org. http://www.sagemath.org

20.

J. Sturm, On the congruence of modular forms, Lecture Notes in Mathematics 1240 (1987), Springer-Verlag, 275–280. MR894516 J. Sturm, On the congruence of modular forms, Lecture Notes in Mathematics 1240 (1987), Springer-Verlag, 275–280. MR894516

21.

T. Xylouris, On Linnik's constant, Acta Arithmetica 150 (2011), no. 1, 65–91. MR2825574 10.4064/aa150-1-4 T. Xylouris, On Linnik's constant, Acta Arithmetica 150 (2011), no. 1, 65–91. MR2825574 10.4064/aa150-1-4
Copyright © 2014 Adam Mickiewicz University
Sam Chow and Alexandru Ghitza "Distinguishing eigenforms modulo a prime ideal," Functiones et Approximatio Commentarii Mathematici 51(2), 363-377, (December 2014). https://doi.org/10.7169/facm/2014.51.2.8
Published: December 2014
Vol.51 • No. 2 • December 2014
Back to Top