Translator Disclaimer
September 2014 Self-approximation of Hurwitz Zeta-functions
Ramūnas Garunkštis, Erikas Karikovas
Funct. Approx. Comment. Math. 51(1): 181-188 (September 2014). DOI: 10.7169/facm/2014.51.1.10

Abstract

We are looking for real numbers $\alpha$ and $d$ for which there exist ``many'' real numbers $\tau$ such that the shifts of the Hurwitz-zeta function $\zeta(s+i\tau,\alpha)$ and $\zeta(s+id\tau,\alpha)$ are ``near'' each other.

Citation

Download Citation

Ramūnas Garunkštis. Erikas Karikovas. "Self-approximation of Hurwitz Zeta-functions." Funct. Approx. Comment. Math. 51 (1) 181 - 188, September 2014. https://doi.org/10.7169/facm/2014.51.1.10

Information

Published: September 2014
First available in Project Euclid: 24 September 2014

zbMATH: 1357.11082
MathSciNet: MR3263076
Digital Object Identifier: 10.7169/facm/2014.51.1.10

Subjects:
Primary: 11M35
Secondary: 11M26

Rights: Copyright © 2014 Adam Mickiewicz University

JOURNAL ARTICLE
8 PAGES


SHARE
Vol.51 • No. 1 • September 2014
Back to Top