Open Access
Translator Disclaimer
March 2013 Differentiation of an additive interval measure with values in a conjugate Banach space
Benedetto Bongiorno, Luisa Di Piazza, Kazimierz Musiał
Funct. Approx. Comment. Math. 50(1): 169-180 (March 2013). DOI: 10.7169/facm/2014.50.1.6

Abstract

We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodým property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.

Citation

Download Citation

Benedetto Bongiorno. Luisa Di Piazza. Kazimierz Musiał. "Differentiation of an additive interval measure with values in a conjugate Banach space." Funct. Approx. Comment. Math. 50 (1) 169 - 180, March 2013. https://doi.org/10.7169/facm/2014.50.1.6

Information

Published: March 2013
First available in Project Euclid: 27 March 2014

zbMATH: 1292.28019
MathSciNet: MR3189506
Digital Object Identifier: 10.7169/facm/2014.50.1.6

Subjects:
Primary: 28B20
Secondary: 26A39 , 28B05 , 46G10 , ‎54C60‎

Keywords: Kurzweil-Henstock integral , Pettis integral , variational measure

Rights: Copyright © 2014 Adam Mickiewicz University

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.50 • No. 1 • March 2013
Back to Top