Open Access
March 2011 The Phragmén Lindelöf condition for evolution for quadratic forms
Chiara Boiti, Reinhold Meise
Funct. Approx. Comment. Math. 44(1): 111-131 (March 2011). DOI: 10.7169/facm/1301497749


Let $P \in \mathbb{C}[\tau, \zeta_1, \ldots, \zeta_n]$ be a quadratic polynomial for which the $\tau$-variable is non-characteristic. We characterize when the zero-variety $V(P)$ of $P$ satisfies the Phragmén-Lindelöf condition $PL(\omega)$ or equivalently when the pair $(\mathbb{R}_x^n, \mathbb{R}_\tau \times \mathbb{R}_x^n)$ is of evolution in the class ${\mathcal E}_\omega$ for the partial differential operator $P(D)$ with symbol $P$.


Download Citation

Chiara Boiti. Reinhold Meise. "The Phragmén Lindelöf condition for evolution for quadratic forms." Funct. Approx. Comment. Math. 44 (1) 111 - 131, March 2011.


Published: March 2011
First available in Project Euclid: 30 March 2011

zbMATH: 1223.32020
MathSciNet: MR2807901
Digital Object Identifier: 10.7169/facm/1301497749

Primary: 32U05
Secondary: 35E99 , 35L99

Keywords: differential equations of evolution , Phragmén-Lindelöf conditions , ultradifferentiable functions

Rights: Copyright © 2011 Adam Mickiewicz University

Vol.44 • No. 1 • March 2011
Back to Top