Abstract
We give explicit numerical values with 100 decimal digits for the Mertens constant involved in the asymptotic formula for $\sum_{\substack{p\le x\\ p\equiv a \operatorname{mod} q}} 1/p$ and, as a byproduct, for the Meissel-Mertens constant defined as $\sum_{p\equiv a \operatorname{mod}q} (\log(1-1/p) + 1/p)$, for $q \in \{3,\dots,100\}$ and $(q, a) = 1$. The complete set of results is available online (http://www.math.unipd.it/~languasc/Mertens-comput.html).
Citation
Alessandro Languasco. Alessandro Zaccagnini. "Computing the Mertens and Meissel–Mertens Constants for Sums over Arithmetic Progressions." Experiment. Math. 19 (3) 279 - 284, 2010.
Information